%0 Generic %A L., Hu %A H., Xu %A J., Lu %A Y., Zhou %A F., Chu %A W., Zheng %A L., Lei %A J., Zhao %A H., Wang %A M., Guo %A C., Chen %A L., Xu %D 2018 %T Supplementary Material for: MicroRNA-126 Deficiency Affects the Development of Thymus CD4+ Single-Positive Cells through Elevating IRS-1 %U https://karger.figshare.com/articles/dataset/Supplementary_Material_for_MicroRNA-126_Deficiency_Affects_the_Development_of_Thymus_CD4_sup_sup_Single-Positive_Cells_through_Elevating_IRS-1/6865571 %R 10.6084/m9.figshare.6865571.v1 %2 https://karger.figshare.com/ndownloader/files/12525704 %K MicroRNA-126 %K Knockdown %K Thymus %K SP cells %K IRS-1 %X Background: MicroRNA-126 (miR-126), a distinct miRNA family member, has been reported to be involved in the development and function of some types of immune cells. However, the potential role of miR-126 in the development of CD4+ T cells remains to be elucidated. Objectives: To investigate the potential role of miR-126 in the development of CD4+ T cells in the thymus and explore its significance. Methods: The relative expression level of miR-126 in thymus CD4+ single-positive (SP) cells was detected by Real-Time PCR assay. The possible change in thymus tissue was assessed by histopathology. The total cell number of thymocytes and the expression of activation-associated molecules including CD62L, CD69, and CD44, as well as proliferation-associated nuclear antigen Ki-67, in CD4+ SP cells were assessed by flow cytometric analysis. The expression of IRS-1 and related signaling pathways including Akt and Erk were determined by flow cytometric analysis. Results: Compared with that in wild-type (WT) mice, the total cell number of thymocytes in miR-126 knockdown (KD) mice increased significantly. Moreover, the proportion and absolute cell number of thymic CD4+ SP cells decreased significantly in miR-126 KD mice. Further analysis showed that the frequencies of activation-associated molecules including CD62L, CD69, and CD44, as well as proliferation-associated nuclear antigen Ki-67 in CD4+ SP cells also changed significantly, respectively. Mechanism aspect, the expression level of IRS-1, a putative target of miR-126, increased significantly in CD4+ SP cells in miR-126 KD mice. Moreover, the expression levels of the signaling molecules phosphorylated (p)-Akt and p-Erk also changed significantly. Conclusions: Our work is the first to reveal a previously unknown role of miR-126 in the development of CD4+ SP cells in the thymus, which might ultimately benefit studies on development of thymocytes. %I Karger Publishers