Erratum: Functional Analysis of Seven Genes Linked to Body Mass Index and Adiposity by Genome-Wide Association Studies: A Review

2017-07-25T13:44:42Z (GMT) by Speakman J.R.
Genome-wide association studies (GWAS) have identified a total of about 40 single nucleotide polymorphisms (SNPs) that show significant linkage to body mass index, a widely utilised surrogate measure of adiposity. However, only 8 of these associations have been confirmed by follow-up GWAS using more sophisticated measures of adiposity (computed tomography). Among these 8, there is a SNP close to the gene FTO which has been the subject of considerable work to diagnose its function. The remaining 7 SNPs are adjacent to, or within, the genes NEGR1, TMEM18, ETV5, FLJ35779, LINGO2, SH2B1 and GIPR, most of which are less well studied than FTO, particularly in the context of obesity. This article reviews the available data on the functions of these genes, including information gleaned from studies in humans and animal models. At present, we have virtually no information on the putative mechanism associating the genes FLJ35779 and LINGO2 to obesity. All of these genes are expressed in the brain, and for 2 of them (SH2B1 and GIPR), a direct link to the appetite regulation system is known. SH2B1 is an enhancer of intracellular signalling in the JAK-STAT pathway, and GIPR is the receptor for an appetite-linked hormone (GIP) produced by the alimentary tract. NEGR1, ETV5 and SH2B1 all have suggested roles in neurite outgrowth, and hence SNPs adjacent to these genes may affect development of the energy balance circuitry. Although the genes have central patterns of gene expression, implying a central neuronal connection to energy balance, for at least 4 of them (NEGR1, TMEM18, SH2B1 and GIPR), there are also significant peripheral functions related to adipose tissue biology. These functions may contribute to their effects on the obese phenotype.