000332390_sm_supplemental_ material.pdf (68.16 kB)
0/0

Supplementary Material for: A Lentiviral CXCR4 Overexpression and Knockdown Model in Colorectal Cancer Cell Lines Reveals Plerixafor-Dependent Suppression of SDF-1α-Induced Migration and Invasion

Download (68.16 kB)
dataset
posted on 20.09.2011 by Heckmann D., Laufs S., Maier P., Zucknick M., Giordano F.A., Veldwijk M.R., Eckstein V., Wenz F., Zeller W.J., Fruehauf S.
Background: The development of distant metastasis is associated with poor outcome in patients with colorectal cancer (CRC). The stromal cell-derived factor-1 (SDF-1) and its receptor CXC chemokine receptor 4 (CXCR4) have pivotal roles in the chemotaxis of migrating tumor cells during metastasis. Thus, hampering the SDF-1/CXCR4 cross-talk is a promising strategy to suppress metastasis. Methods: We investigated the invasive behavior of the lentivirally CXCR4overexpressing CRC cell lines SW480, SW620 and RKO in chemotaxis and invasion assays toward an SDF-1α gradient. Low endogenous CXCR4 expression levels were determined by quantitative realtime polymerase chain reaction (PCR) and fluorescence-activated cell sorting (FACS) analyses. Results: A lentiviral CXCR4 overexpression and knockdown model was established in these CRC cells. In transwell migration assays, CXCR4 overexpression favored chemotaxis and invasion of cells in all 3 lines depending on an SDF-1α gradient (p < 0.001 vs. untransduced cells). Functional CXCR4 knockdown using lentiviral short hairpin RNA (shRNA) vectors significantly decreased the migration behavior in CRC cell lines (p < 0.001), confirming a CXCR4-specific effect. Pharmacologic inhibition of the SDF-1α/CXCR4 interaction by the bicyclam PlerixaforTM at 100 µM significantly abrogated CXCR4-dependent migration and invasion through MatrigelTM (SW480, SW620, RKO; p < 0.05). Conclusion: Our results indicate that a CXCR4-antagonistic therapy might prevent tumor cell dissemination and metastasis in CRC patients, consequently improving survival.

History

Licence

Exports