486853sm_1.pdf (526.62 kB)
0/0

Supplementary Material for: A Novel Early Pregnancy Risk Prediction Model for Gestational Diabetes Mellitus

Download (526.62 kB)
dataset
posted on 13.06.2018 by Sweeting A.N., Wong J., Appelblom H., Ross G.P., Kouru H., Williams P.F., Sairanen M., Hyett J.A.
Introduction: Accurate early risk prediction for gestational diabetes mellitus (GDM) would target intervention and prevention in women at the highest risk. We evaluated novel biomarker predictors to develop a first-trimester risk prediction model in a large multiethnic cohort. Methods: Maternal clinical, aneuploidy and pre-eclampsia screening markers (PAPP-A, free hCGβ, mean arterial pressure, uterine artery pulsatility index) were measured prospectively at 11–13+6 weeks’ gestation in 980 women (248 with GDM; 732 controls). Nonfasting glucose, lipids, adiponectin, leptin, lipocalin-2, and plasminogen activator inhibitor-2 were measured on banked serum. The relationship between marker multiples-of-the-median and GDM was examined with multivariate regression. Model predictive performance for early (< 24 weeks’ gestation) and overall GDM diagnosis was evaluated by receiver operating characteristic curves. Results: Glucose, triglycerides, leptin, and lipocalin-2 were higher, while adiponectin was lower, in GDM (p < 0.05). Lipocalin-2 performed best in Caucasians, and triglycerides in South Asians with GDM. Family history of diabetes, previous GDM, South/East Asian ethnicity, parity, BMI, PAPP-A, triglycerides, and lipocalin-2 were significant independent GDM predictors (all p < 0.01), achieving an area under the curve of 0.91 (95% confidence interval [CI] 0.89–0.94) overall, and 0.93 (95% CI 0.89–0.96) for early GDM, in a combined multivariate prediction model. Conclusions: A first-trimester risk prediction model, which incorporates novel maternal lipid markers, accurately identifies women at high risk of GDM, including early GDM.

History

Licence

Exports

Logo branding

Categories

Licence

Exports