000355443_sm_Tables.doc (164.5 kB)
0/0

Supplementary Material for: Disruption of the ATE1 and SLC12A1 Genes by Balanced Translocation in a Boy with Non-Syndromic Hearing Loss

Download (164.5 kB)
dataset
posted on 04.10.2013 by Vona B., Neuner C., El Hajj N., Schneider E., Farcas R., Beyer V., Zechner U., Keilmann A., Poot M., Bartsch O.
We report on a boy with non-syndromic hearing loss and an apparently balanced translocation t(10;15)(q26.13;q21.1). The same translocation was found in the normally hearing brother, father and paternal grandfather; however, this does not exclude its involvement in disease pathogenesis, for example, by unmasking a second mutation. Breakpoint analysis via FISH with BAC clones and long-range PCR products revealed a disruption of the arginyltransferase 1 (ATE1) gene on translocation chromosome 10 and the solute carrier family 12, member 1 gene (SLC12A1) on translocation chromosome 15. SNP array analysis revealed neither loss nor gain of chromosomal regions in the affected child, and a targeted gene enrichment panel consisting of 130 known deafness genes was negative for pathogenic mutations. The expression patterns in zebrafish and humans did not provide evidence for ear-specific functions of the ATE1 and SLC12A1 genes. Sanger sequencing of the 2 genes in the boy and 180 GJB2 mutation-negative hearing-impaired individuals did not detect homozygous or compound heterozygous pathogenic mutations. Our study demonstrates the many difficulties in unraveling the molecular causes of a heterogeneous phenotype. We cannot directly implicate disruption of ATE1 and/or SLC12A1 to the abnormal hearing phenotype; however, mutations in these genes may have a role in polygenic or multifactorial forms of hearing impairment. On the other hand, it is conceivable that our patient carries a disease-causing mutation in a so far unidentified deafness gene. Evidently, disruption of ATE1 and/or SLC12A1 gene function alone does not have adverse effects.

History

Licence

Exports