HHE456033_sm1.PDF (3.97 MB)

Supplementary Material for: Human Birth Weight and Reproductive Immunology: Testing for Interactions between Maternal and Offspring KIR and HLA-C Genes

Download (3.97 MB)
journal contribution
posted on 17.02.2017 by Clark M.M., Chazara O., Sobel E.M., Gjessing H.K., Magnus P., Moffett A., Sinsheimer J.S.

Background/Aims: Maternal and offspring cell contact at the site of placentation presents a plausible setting for maternal-fetal genotype (MFG) interactions affecting fetal growth. We test hypotheses regarding killer cell immunoglobulin-like receptor (KIR) and HLA-C MFG effects on human birth weight by extending the quantitative MFG (QMFG) test. Methods: Until recently, association testing for MFG interactions had limited applications. To improve the ability to test for these interactions, we developed the extended QMFG test, a linear mixed-effect model that can use multi-locus genotype data from families. Results: We demonstrate the extended QMFG test's statistical properties. We also show that if an offspring-only model is fit when MFG effects exist, associations can be missed or misattributed. Furthermore, imprecisely modeling the effects of both KIR and HLA-C could result in a failure to replicate if these loci's allele frequencies differ among populations. To further illustrate the extended QMFG test's advantages, we apply the extended QMFG test to a UK cohort study and the Norwegian Mother and Child Cohort (MoBa) study. Conclusion: We find a significant KIR-HLA-C interaction effect on birth weight. More generally, the QMFG test can detect genetic associations that may be missed by standard genome-wide association studies for quantitative traits.