Supplementary Material for: IL-33 and Its Receptor ST2 after Inhaled Allergen Challenge in Allergic Asthmatics

Background: Previous murine models have demonstrated interleukin (IL)-33 to be an important mediator of type-2 inflammation and to promote airway hyperresponsiveness in allergic asthma. A number of inflammatory cells produce IL-33 and eosinophils express ST2 mRNA. The relationship between IL-33 and eosinophils in allergic asthma, however, remains unclear. Objective: The aim of this work was to evaluate in vitro the effect of allergen inhalation on IL-33 levels and expression of its receptor (ST2L) on eosinophils in allergic asthmatics, and the effect of IL-33 stimulation on eosinophil activity. Methods: Plasma and sputum IL-33, soluble ST2 (sST2) levels, and ST2L expression on eosinophils were measured in 10 healthy controls and 10 allergic asthmatics. Asthmatics underwent allergen and diluent inhalation challenges. Blood and sputum samples were collected to measure IL-33, sST2, and ST2L eosinophil expression before and 24 h after allergen inhalation. Purified blood eosinophils from allergic asthmatics were incubated overnight with IL-33 to assess ST2 and intracellular IL-5 expression. Results: Baseline levels of IL-33 in sputum and sST2 in plasma and sputum were similar in allergic asthmatics compared to healthy controls. In addition, there was no difference in blood or sputum eosinophil ST2L expression in healthy controls versus allergic asthmatics. Eosinophil ST2L expression was significantly increased 24 h postallergen inhalation in allergic asthmatics. In vitro stimulation of human eosinophils with IL-33 and LPS significantly increased eosinophil ST2L expression and IL-33 stimulation increased intracellular IL-5 expression, which was attenuated by treatment with sST2 and ST2 blockade. Conclusion and Clinical Relevance: In mild asthmatics, there was a significant upregulation of ST2 surface expression on eosinophils from blood and sputum following allergen inhalation challenge. In vitro, IL-33 stimulation of eosinophils increases both ST2 membrane expression and IL-5 production. These results support a role for IL-33 in causing allergen-induced eosinophilia. Blockade of IL-33 and ST2 signaling may present a novel therapeutic avenue for asthma treatment.