Karger Publishers
Browse
1/1
8 files

Supplementary Material for: IL-37 Causes Excessive Inflammation and Tissue Damage in Murine Pneumococcal Pneumonia

dataset
posted on 2017-06-09, 07:52 authored by Schauer A.E., Klassert T.E., von Lachner C., Riebold D., Schneeweiß A., Stock M., Müller M.M., Hammerschmidt S., Bufler P., Seifert U., Dietert K., Dinarello C.A., Nold M.F., Gruber A.D., Nold-Petry C.A., Slevogt H.

Streptococcus pneumoniae infections can lead to severe complications with excessive immune activation and tissue damage. Interleukin-37 (IL-37) has gained importance as a suppressor of innate and acquired immunity, and its effects have been therapeutic as they prevent tissue damage in autoimmune and inflammatory diseases. By using RAW macrophages, stably transfected with human IL-37, we showed a 70% decrease in the cytokine levels of IL-6, TNF-α, and IL-1β, and a 2.2-fold reduction of the intracellular killing capacity of internalized pneumococci in response to pneumococcal infection. In a murine model of infection with S. pneumoniae, using mice transgenic for human IL-37b (IL-37tg), we observed an initial decrease in cytokine expression of IL-6, TNF-α, and IL-1β in the lungs, followed by a late-phase enhancement of pneumococcal burden and subsequent increase of proinflammatory cytokine levels. Additionally, a marked increase in recruitment of alveolar macrophages and neutrophils was noted, while TRAIL mRNA was reduced 3-fold in lungs of IL-37tg mice, resulting in necrotizing pneumonia with augmented death of infiltrating neutrophils, enhanced bacteremic spread, and increased mortality. In conclusion, we have identified that IL-37 modulates several core components of a successful inflammatory response to pneumococcal pneumonia, which lead to increased inflammation, tissue damage, and mortality.

History

Usage metrics

    Pediatric Neurosurgery

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC