Karger Publishers
Browse
AHA480632_sm1.pdf (1.69 MB)

Supplementary Material for: Novel Iron-Whey Protein Microspheres Protect Gut Epithelial Cells from Iron-Related Oxidative Stress and Damage and Improve Iron Absorption in Fasting Adults

Download (1.69 MB)
journal contribution
posted on 2018-01-04, 10:58 authored by Wang J., Radics G., Whelehan M., OʼDriscoll A., Healy A.M., Gilmer J.F., Ledwidge M.

Background: Iron food fortification and oral iron formulations are frequently limited by poor absorption, resulting in the widespread use of high-dose oral iron, which is poorly tolerated. Methods: We evaluated novel iron-denatured whey protein (Iron-WP) microspheres on reactive oxygen species (ROS) and viability in gut epithelial (HT29) cells. We compared iron absorption from Iron-WP versus equimolar-dose (25 mg elemental iron) ferrous sulphate (FeSO4) in a prospective, randomised, cross-over study in fasting volunteers (n = 21 per group) dependent on relative iron depletion (a ferritin level ≤/>30 ng/mL). Results: Iron-WP caused less ROS generation and better HT29 cell viability than equimolar FeSO4. Iron-WP also showed better absorption with a maximal 149 ± 39% increase in serum iron compared to 65 ± 14% for FeSO4 (p = 0.01). The response to both treatments was dependent on relative iron depletion, and multi-variable analysis showed that better absorption with Iron-WP was independent of baseline serum iron, ferritin, transferrin saturation, and haemoglobin in the overall group and in the sub-cohort with relative iron depletion at baseline (p < 0.01). Conclusions: Novel Iron-WP microspheres may protect gut epithelial cells and improve the absorption of iron versus FeSO4. Further evaluation of this approach to food fortification and supplementation with iron is warranted.

History

Usage metrics

    Acta Haematologica

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC