2 files

Supplementary Material for: A Three-Dimensional Musculoskeletal Model of the Western Lowland Gorilla Foot: Examining Muscle Torques and Function

posted on 09.07.2019, 09:46 by Goh C., Blanchard M.L., Crompton R.H., Gunther M.M., Macaulay S., Bates K.T.
Due to difficulty of obtaining accurate quantitative data on foot muscles, relatively little has been done to study foot muscle function in non-human apes. Gorilla feet are known to be similar in bony proportions and mechanics to those of humans, hence are key to understanding human foot evolution and its ecological context. We present the first 3D musculoskeletal computer model of a western lowland gorilla foot, giving muscle torques about the tarsometatarsal, metatarsophalangeal and interphalangeal joints of digits 2–5. Peak flexor torque around the fifth metatarsophalangeal joint occurs at a highly flexed position, suggesting an ability to maintain flexed postures around lateral metatarsophalangeal joints, useful for grasping vertical supports. For distal interphalangeal joints, flexor torques peaked the more medial the digit at relatively flexed postures. We report, for the first time, interossei acting upon proximal and distal interphalangeal joints. All these facilitate maintenance of flexed positions around distal interphalangeal joints, likely used for grasping of small supports/objects. Humans lack these features, suggesting that semi-arboreal early hominins made less use of the peripheral canopy than gorillines. Information here could be used in gorilla enclosure design to encourage wild-type locomotor repertoires in captivity.