000328435_sm_Tables.pdf (23.56 kB)
Download file

Supplementary Material for: Evolution of Leptin Structure and Function

Download (23.56 kB)
posted on 16.06.2011, 00:00 by Denver R.J., Bonett R.M., Boorse G.C.
Leptin, the protein product of the obese(ob or Lep) gene, is a hormone synthesized by adipocytes that signals available energy reserves to the brain, and thereby influences development, growth, metabolism and reproduction. In mammals, leptin functions as an adiposity signal: circulating leptin fluctuates in proportion to fat mass, and it acts on the hypothalamus to suppress food intake. Orthologs of mammalian Lep genes were recently isolated from several fish and two amphibian species, and here we report the identification of two Lep genes in a reptile, the lizard Anolis carolinensis. While vertebrate leptins show large divergence in their primary amino acid sequence, they form similar tertiary structures, and may have similar potencies when tested in vitro on heterologous leptin receptors (LepRs). Leptin binds to LepRs on the plasma membrane, activating several intracellular signaling pathways. Vertebrate LepRs signal via the Janus kinase (Jak) and signal transducer and activator of transcription (STAT) pathway. Three tyrosine residues located within the LepR cytoplasmic domain are phosphorylated by Jak2 and are required for activation of SH2-containing tyrosine phosphatase-2, STAT5 and STAT3 signaling. These tyrosines are conserved from fishes to mammals, demonstrating their critical role in signaling by the LepR. Leptin is anorexigenic in representatives of all vertebrate classes, suggesting that its role in energy balance is ancient and has been evolutionarily conserved. In addition to its integral role as a regulator of appetite and energy balance, leptin exerts pleiotropic actions in development, physiology and behavior.


Usage metrics

Read the peer-reviewed publication