7 files

Supplementary Material for: Functional Interaction between Apolipophorins and Complement Regulate the Mosquito Immune Response to Systemic Infections

posted on 14.10.2016, 11:50 by Kamareddine L., Nakhleh J., Osta M.A.

The complement-like protein thioester-containing protein 1 (TEP1) is the hallmark effector molecule against Plasmodium ookinetes in the malaria vector Anopheles gambiae. We have previously shown that the knockdown of the noncatalytic clip domain serine protease CLIPA2 increased TEP1-mediated killing rendering mosquitoes more resistant to Plasmodium, bacterial and fungal infections. Here, CLIPA2 coimmunoprecipitation from the hemolymph of Beauveria bassiana-infected mosquitoes followed by mass spectrometry and functional genetic analysis led to the identification of the Apolipophorin-II/I gene, encoding the two lipid carrier proteins Apo-I and II, as a novel negative regulator of TEP1-mediated immune response during mosquito systemic infections. Apo-II/I exhibits a similar RNAi phenotype as CLIPA2 in mosquito bioassays characterized by increased resistance to B. bassiana and Escherichia coli infections. We provide evidence that this enhanced resistance to systemic infections is TEP1 dependent. Interestingly, silencing Apo-II/I but not CLIPA2 upregulated the expression of TEP1 following systemic infections with E. coli and B. bassiana in a c-Jun N-terminal kinase pathway-dependent manner. Our results suggest that mosquito Apo-II/I plays an important immune regulatory role during systemic infections and provide novel insight into the functional interplay between lipid metabolism and immune gene regulation.