SM_10.1159000485048.pdf (700.24 kB)
Download file

Supplementary Material for: Inflammatory and Angiogenic Factors Linked to Longitudinal Microvascular Changes in Hemodialysis Patients Irrespective of Treatment Dose Intensity

Download (700.24 kB)
posted on 16.11.2017, 09:38 by Mitsides N., Cornelis T., Broers N.J.H., Diederen N.M.P., Brenchley P., Heitink-ter Braak N., van der Sande F.M., Schalkwijk C.G., Kooman J.P., Mitra S.
Background: Cardiovascular disease is a major contributor to the poor outcomes observed in hemodialysis. We investigated the relationship between hemodialysis intensity and vascular parameters in high-dose (HDHD; >12hrs/week) and Conventional (CHD; ≤12hrs/week) hemodialysis intensity over a 6-month period. Methods: We present the 6-month longitudinal analysis of a 2-year multicenter study investigating the effects of HDHD on cardiovascular parameters. We used pulse wave velocity, 24hr ambulatory blood pressure and sublingual dark field capillaroscopy measurements to assess macro- and microcirculation on 6-monthly basis. Pro-inflammatory and endothelial biomarkers were also measured at 6-monthly intervals. Results: 47 participants (21 HDHD, 26 CHD) were studied. CHD were older (63.5±14.2 vs 53.7±12.6 yr; p=0.018), with shorter dialysis vintage (median 23 vs 61 months; p=0.001). There was considerable variability in the degree and direction of change of circulatory measurements over a 6-month period. Hemodialysis intensity (hrs/week) did not correlate to these changes, when adjusted for age, dialysis vintage and comorbidity. Higher levels of Interleukin (IL)-8 measured at baseline independently predicted an increase in the Perfused Boundary Region (5-25μm) of the endothelial glycocalyx (p=0.010) whilst higher levels of soluble Flt-1 had a significant inverse effect (p=0.002) in an adjusted linear model. Conclusion: Hemodialysis intensity did not predict changes in either macro- or microvascular parameters. Inflammation mediated through the IL-8 pathway predicted microvascular injury while Flt-1, a potential marker of angiogenesis and endothelial repair, might have a significant protective role. Further understanding of these pathways will be necessary to improve dialysis outcomes.