000439219_sm_Video.mov (46.91 MB)
Download file

Supplementary Material for: Remote Ischemic Preconditioning May Attenuate Renal Ischemia-Reperfusion Injury in a Porcine Model of Supraceliac Aortic Cross-Clamping

Download (46.91 MB)
posted on 20.10.2015, 00:00 by Athanasiadis D., Kapelouzou A., Martikos G., Katsimpoulas M., Schizas D., Vasdekis S.N., Kostakis A., Liakakos T.D., Lazaris A.M.
Aim: The effect of remote ischemic preconditioning (RIPC) in decreasing renal ischemia-reperfusion injury (IRI) during a suprarenal aortic cross-clamping was examined in a swine model. Materials and Methods: Four groups of pigs were examined: (a) ischemia-reperfusion (IR) group, renal IRI produced by 30 min of supraceliac aortic cross-clamping; (b) RIPC I group, the same renal IRI following RIPC by brief occlusion of the infrarenal aorta (15 min ischemia and 15 min reperfusion); (c) RIPC II group, the same renal IRI following RIPC by brief occlusion of the infrarenal aorta (3 cycles of 5 min ischemia and 5 min reperfusion); (d) sham group. Renal function was assessed before and after IRI by examining creatinine, neutrophil gelatinase-associated lipocalin (NGAL), TNF-α, malondialdehyde (MDA), cystatin C and C-reactive protein (CRP) from renal vein blood samples at specific time intervals. Results: Both RIPC groups presented significantly less impaired results compared to the IR group when considering MDA, cystatin C, CRP and creatinine. Between the two RIPC groups, RIPC II presented a better response with regard to CRP, NGAL, TNF-α, MDA and cystatin C. Conclusions: Remote IR protocols and mainly repetitive short periods of cycles of IR ameliorate the biochemical kidney effects of IRI in a model of suprarenal aortic aneurysm repair.