CTO511866_sm1.pptx (348.01 kB)
Download file

Supplementary Material for: Role of Block Copolymers in Tissue Engineering Applications

Download (348.01 kB)
posted on 17.02.2021, 11:31 by Malik S., Sundarrajan S., Hussain T., Nazir A., Ramakrishna S.
Research on synthesis, characterization, and understanding of novel properties of nanomaterials has led researchers to exploit their potential applications. When compared to other nanotechnologies described in the literature, electrospinning has received significant interest due to its ability to synthesize novel nanostructures (such as nanofibers, nanorods, nanotubes, etc.) with distinctive properties such as high surface-to-volume ratio, porosity, various morphologies such as fibers, tubes, ribbons, mesoporous and coated structures, and so on. Various materials such as polymers, ceramics, and composites have been fabricated using the electrospinning technique. Among them, polymers, especially block copolymers, are one of the useful and niche systems studied recently owing to their unique and fascinating properties in both solution and solid state due to thermodynamic incompatibility of the blocks, that results in microphase separation. Morphology and mechanical properties of electrospun block copolymers are intensely influenced by quantity and length of soft and hard segments. They are one of the best studied systems to fit numerous applications due to a broad variety of properties they display upon varying the composition ratio and molecular weight of blocks. In this review, the synthesis, fundamentals, electrospinning, and tissue engineering application of block copolymers are highlighted.


Usage metrics