Karger Publishers
Browse
1/1
7 files

Supplementary Material for: Semaphorin-3C Is Upregulated in Polycystic Kidney Epithelial Cells and Inhibits Angiogenesis of Glomerular Endothelial Cells

dataset
posted on 2020-07-01, 13:37 authored by Kim B.H., Kim D.Y., Ahn Y., Lee E.J., Park H., Park M., Park J.H.
Background: Polycystic kidney disease (PKD) is a hereditary disease characterized by cyst formation in the kidneys bilaterally. It has been observed that semaphorin-3C (SEMA3C) is overexpressed in polycystic kidney epithelial cells. It is hypothesized that upregulated SEMA3C would contribute to survival of polycystic kidney epithelial cells. Furthermore, as the kidney is a highly vascularized organ, the secreted SEMA3C from PKD epithelial cells will affect glomerular endothelial cells (GECs) in a paracrine manner. Methods: To evaluate the effect of SEMA3C on renal cells, siSEMA3C-treated PKD epithelial cells were used for further analysis, and GECs were exposed to recombinant SEMA3C (rSEMA3C). Also, co-culture and treatment of conditioned media were employed to confirm whether PKD epithelial cells could influence on GECs via SEMA3C secretion. Results: SEMA3C knockdown reduced proliferation of PKD epithelial cells. In case of GECs, exposure to rSEMA3C decreased angiogenesis, which resulted from suppressed migratory ability not cell proliferation. Conclusions: This study indicates that SEMA3C is the aggravating factor in PKD. Thus, it is proposed that targeting SEMA3C can be effective to mitigate PKD.

History

Usage metrics

    American Journal of Nephrology

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC