506222_sm.pdf (1.93 MB)

Supplementary Material for: Sequence Evolution, Abundance, and Chromosomal Distribution of Ty1-copia Retrotransposons in the Saccharum spontaneum Genome

Download (1.93 MB)
posted on 22.06.2020 by Yang S., Zeng K., Chen K., Zhao X., Wu J, Huang Y, Deng Z.
Saccharum spontaneum is a wild germplasm resource of the genus Saccharum that has many valuable traits. Ty1-copia retrotransposons constitute a large proportion of plant genomes and affect genome sequence organization and evolution. This study aims to analyze the sequence heterogeneity, phylogenetic diversity, copy number, and chromosomal dispersion patterns of Ty1-copia retrotransposons in S. spontaneum. A total of 44 Ty1-copia reverse transcriptase subclones isolated from S. spontaneum showed a range of heterogeneity, and all sequences were A-T rich, averaging approximately 54.59%. Phylogenetic analysis divided the 44 reverse transcriptase sequences into 5 distinct lineages (Retrofit/Ale, Sire/Maximus, Bianca, Tork/TAR, and Ty1-copia like). Dot-blot hybridization revealed that Ty1-copia retrotransposons consisted of a significant component of approximately 38,900 copies and 16,300 copies per genome in the accessions YN82-114 (2n = 10x = 80) and AP85-441 (2n = 4x = 32), respectively. The results of a local blast analysis showed that there are 15,069 Ty1-copia retrotransposon copies in the genome of AP85-441, of which the Retrofit/Ale lineage had the highest copy number, followed by the Tork/TAR, Sire/Maximus, and Bianca lineages. Furthermore, both FISH and the local blast analysis with AP85-441 genomic data demonstrated that the Ty1-copia retrotransposons were unevenly distributed throughout the chromosomes. Taken together, this study provides insights into the role of Ty1-copia retrotransposons in the evolution and organization of the S. spontaneum genome.