Supplementary material-Supplementary_Figure_1.tif (12.83 MB)
Download file

Supplementary Material for: The microRNA-210/Casp8ap2 Axis Alleviates Hypoxia-Induced Myocardial Injury by Regulating Apoptosis and Autophagy

Download (12.83 MB)
dataset
posted on 21.04.2021, 10:26 by Wu T.-Y., Leng Q., Tian L.-Q.
Coronary heart disease (CHD) is a serious condition comprising atherosclerosis-mediated ischaemic and hypoxic myocardial injury. This study aimed to investigate the mechanism of the miR-210/Casp8ap2 signalling pathway in hypoxic myocardial cells. mRNA and protein expression levels were determined by quantitative real-time PCR and western blotting, respectively. MTT was used to evaluate cell survival, and flow cytometry was used to assess apoptosis and the cell cycle distribution. The interaction between miR-210 and ­Casp8ap2 was detected by dual-luciferase reporter assay. As a result, overexpression of miR-210 significantly inhibited apoptosis and reduced the proportion of cells in G1 phase. Moreover, miR-210 suppressed autophagy by upregulating p62 levels and reducing the LC3-II/I ratio in hypoxic cardiomyocytes. miR-210 regulated apoptosis and autophagy by directly targeting Casp8ap2. Furthermore, the expression levels of Casp8ap2, Cleaved caspase 8, Cleaved caspase 3and Beclin-1 were all decreased in response to miR-210. In short, our results suggest that miR-210 exerts anti-apoptotic and anti-autophagic effects in hypoxic cardiomyocytes, which alleviates myocardial injury in response to hypoxia.

History