PHA_201703001_1_8_Supplementary_data.docx (120.25 kB)

Supplementary Material for: Amiloride Is Effective in the Management of Abiraterone-Induced Mineralocorticoid Excess Syndrome without Interfering with Its Antineoplastic Activity

Download (120.25 kB)
journal contribution
posted on 10.08.2017, 13:21 by Bedussi F., Galli D., Fragni M., Valcamonico F., Rossini E., Dalla Volta A., Vezzoli S., Roca E., Ferrari V., Lazzari B., Memo M., Sigala S., Berruti A.

Background: The administration of abiraterone acetate (abiraterone) leads to an adrenocorticotropic hormone (ACTH)-driven increase in mineralocorticoid hormones, requiring glucocorticoid supplementation that may stimulate the growth of prostate cancer (PCa). Amiloride is a drug that selectively reduces the aldosterone-sensitive Na+/K+ exchange and could be effective in the management of mineralocorticoid excess syndrome (MCES). Methods: The efficacy of amiloride + hydrochlorothiazide (HCT) in the clinical management of abiraterone-induced MCES was assessed in 5 consecutive patients with castration-resistant PCa (CRPC). Then, using the in vitro experimental model of PCa cell lines, the possible effects of drugs usually used in the clinical management of CRPC patients on PCa cell viability were investigated. Results: Amiloride/HCT led to a complete disappearance of all clinical and biochemical signs of abiraterone-induced MCES in the 5 treated patients. The in vitro study showed that abiraterone treatment significantly decreased cell viability of both androgen receptor (AR)-expressing VCaP (vertebral-cancer of the prostate) and LNCaP (lymph node carcinoma of the prostate) cells, with no effect on AR-negative PC-3 cells. Prednisolone, spironolactone, and eplerenone increased LNCaP cell viability, while amiloride reduced it. The non-steroid aldosterone antagonist PF-03882845 did not modify PCa cell viability. Conclusions: The combination of amiloride/HCT was effective in the management of abiraterone-induced MCES. Amiloride did not negatively interfere with the abiraterone inhibition of PCa cell viability in vitro.