Kremer et al.		Supplementary Materials
Supplementary Materials
Expression of -1,4-galactosyltransferases during aging in Caenorhabditis elegans

Overview
Supplementary Materials and Methods
Supplementary Table S1
Supplementary Table S2
Supplementary Table S3
Supplementary References


Supplementary Materials and Methods
Published high-throughput studies on C. elegans lifespan-regulation
[bookmark: _GoBack]For compilation of Supplementary Table S1, published gene lists (see supplementary references) were searched for bre-4 (WBGene00000269), sqv-3 (WBGene00005021) and W02B12.11 (WBGene00012206). Only studies conducted in L4 or adult worms were considered. If published gene lists contained identifiers other than WormBase IDs, these identifiers were converted to WormBase IDs using WormMine (http://intermine.wormbase.org/tools/wormmine/begin.do). Studies selected for this analysis cover the two longevity-models of interest in our work (daf-2 [1, 2] and glp-1 [3]), plus long-lived mitochondrial mutants [2, 4] and eat-2, a genetic model for dietary restriction [5], two timecourse studies [6, 7], and studies that identified targets of selected lifespan-regulatory transcription factors (ATFS-1 [4], DAF-12 [8], DAF-16 [9-14], HIF-1 [4, 15, 16], HSF-1 [17, 18], SKN-1 [3, 19], , UNC-62 [20] and XBP-1 [21]). 
Transcription factor binding to C. elegans B4GALT genes
The full list of worm transcription factor binding sites published by the modERN-consortium (Supplementary Ref. [22], Table S6B) was analysed for the presence of sites in B4GALT-genes in young adulthood and/or L4 using custom R-scripts. CHIP-seq peaks (binding sites) were assigned to a transcript if they overlapped with the region between 500 bp upstream and 300 bp downstream of the transcriptional start site [23]. A gene was considered a target of a given transcription factor if at least one of its transcripts was associated with at least one peak. Information on chromosomal locations of transcriptional start sites was extracted from the Wormbase version WS271 canonical gene set gtf-file (ftp://ftp.wormbase.org/pub/wormbase/releases/WS271/species/c_elegans/PRJNA13758/). See supplementary reference [24] for a recent review covering the transcription factors considered in our analyses.
Primers for qPCR
qPCR-primers used in this study are listed in Supplementary Table S1. Primers for reference genes cdc-42, tba-1 and Y45F10D.4 were published previously [25].
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