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Method
The following procedures (S1–S5) led to the results of the subject-level classification tasks using MNet and Catboost (Table 2 & 3 in the main manuscript, respectively). 

S1 MNet: a deep neural network to classify raw EEG signals
In this study, MNet was modified for enhanced generalizability (Table S1) and applied to solve classification tasks for dementia states (HV, AD, DLB, and iNPH).

Table S1. Detailed configuration of MNet.
	Layer
	Kernel size
	Stride
	# of parameters
	Data shape

	Input
	
	
	
	(1, 19, 1000)

	Conv1
	(19, 4)
	(1, 1)
	3,080
	(40, 1, 997)

	Conv2
	(1, 4)
	(1, 1)
	6,440
	(40, 1, 994)

	BN2D1
	
	
	80
	(40, 1, 994)

	Pool1
	(1, 5)
	(1, 5)
	
	(40, 1, 198)

	Swap axes
	
	
	
	(1, 40, 198)

	Conv3
	(8, 12)
	(1, 1)
	4,850
	(50, 33, 187)

	BN2D2
	
	
	100
	(50, 33, 187)

	Pool2
	(3, 3)
	(3, 3)
	
	(50, 11, 62)

	Conv4
	(1, 5)
	(1, 1)
	12,550
	(50, 11, 58)

	BN2D3
	
	
	100
	(50, 11, 58)

	Pool3
	(1, 2)
	(1, 2)
	
	(50, 11, 29)

	
	
	
	
	

	1
	-
	-
	81,669,120
	(5120)

	ReLU
	
	
	
	

	Dropout
	
	
	
	

	
	-
	-
	~ 1,310,976
	(256)

	ReLU
	
	
	
	

	Dropout
	
	
	
	

	
	-
	-
	# of classes
	(# of classes)

	
	
	
	
	

	1
	-
	-
	81,669,120
	(5120)

	ReLU
	
	
	
	

	Dropout
	
	
	
	

	
	-
	-
	~ 25,7000
	(256)

	ReLU
	
	
	
	

	Dropout
	
	
	
	

	
	-
	-
	# of 
	(# of )


# of parameters: the number of learnable parameters; Conv: convolution; Pool: max pooling; BN2D: BatchNormalization 2D; Fc: full connected; ReLU: the rectified linear activation function f(x) = max(0, x); # of : the number of subjects in the training dataset.

[bookmark: _Hlk117584458]MNet was configured to feed a fixed size EEG segment (), where "19" corresponds to the number of EEG channels for the International 10–20 system and "1,000" corresponds to the sequence length (point) of an EEG segment in our experiment (= 2.0 sec, with the sampling rate of 500 Hz). Two 2D convolutional layers were applied to raw EEG inputs to extract 19-channel-wide features. Then, the channel axis and the time axis were swapped to treat the 2D information like an image. After that, two more convolutional layers were added. Lastly, two modules of fully connected layers were parallelly added with ReLU activation functions. The first fully connected layers was the classification module for dementia diseases and healthy subjects. On the other hand, the second one was for subject ID classification task. Finally, the softmax function was applied on the outputs of both the first and the second fully connected layers to calculate posterior probabilities. Pooling layers, batch normalization layers[1], and dropout layers[2] were used to improve generalizability. In sum, the forward pass of MNet is written as follows:

( 1 )
, where   (: the number of classes in a task) and  (: the number of subjects in the training dataset) are the posterior probabilities for disease type and subject classification tasks of the EEG segment, respectively;  is a raw EEG segment.


[bookmark: _Hlk117770173]S2 Training and inference conditions of MNet
[bookmark: _Hlk117584110]Training conditions of MNet were as follows. The mini-batch size was 256. The cross-entropy loss was calculated for the two fully connected layers' outputs. The first loss was for dementia classification. The second loss was for subject classification (e.g., From whom does the input signal come?). The two losses were combined in the multitask learning framework[3]. The learning rate was . The ranger optimizer was used. The 2D batch normalization was applied after the Conv2 and Conv3 layers (Table S1). The dropout layers were adopted in fully connected layers (Table S1) and their dropout ratios were set to 0.85 during the training stage. The training was performed in a supervised manner for 30 training epochs. At the beginning of every training epoch, up to 100 raw EEG segments were cropped without overlaps from resting state signals starting from a time point (0, 999). The starting points were randomly chosen at every training epoch. When more than 100 EEG segments were available, the first 100 EEG segments were used. It should be noted that the EEG signals were fed into MNet as raw signals without preprocessing, such as normalization.
In inference stages for the validation or test dataset, the dropout ratios were set as zero. Also, batch normalization was performed in its inference mode. Notably, the output of the second fully connected layers was ignored in inference mode.

S3 Catboost classifier: a machine learning to classify EEG power
Catboost is an open-sourced machine learning algorithm based on gradient boosting over decision trees. Since we adopted a deep learning model, which is relatively difficult to find good conditions to work, the Catboost's traits below would be helpful for us to break down possible causes when there was something wrong with MNet. For example, Catboost does not require the scale adjustment of input features; on the other hand, neural network such as MNet expect their input follows standard Gaussian distribution. Manly due to this difference, Catboost puts users less burden and makes it easier to narrow down problems (e.g., issues in preparation of variables, variable transformation, or training condition of deep learning).
  The input features for Catboost were not raw EEG signals but mean frequency band powers on each channel calculated by FFT from each 2-sec EEG segment (δ: 1–4 Hz; θ: 4–8 Hz; low-α: 8–10 Hz; high-α: 10–13 Hz; β: 13–30 Hz; low-γ: 30–58 Hz):

( 2 )
, where   (: the number of classes in a task) and  (: the number of subjects in the training dataset) are the posterior probabilities for disease type and subject classification tasks of the EEG segment, respectively;  is the FFT powers flattened regarding 19 channels.
 It should be noted that the EEG segments nor calculated powers were not preprocessed, such as normalization regarding subjects nor channels. 
From the practical viewpoint, Catboost is thought to be one of the greatest baseline models. Caboost is not dependent on the scales of input features, and robust against outliers of input features. Also, the official package (https://github.com/catboost/catboost), provides a mechanism to monitor the validation score and prevent overfitting.

S4 Classification of dementia states
The following three steps were performed to classify each subject into one of four classes (HV, AD, DLB, and iNPH) based on EEG signals.

S4.1 Preparation of cross-validation for between-subject prediction
To estimate prediction scores on unseen subjects' data, we employed the 5-fold cross-validation method. Regarding subject IDs, we split the whole dataset into five folds. Five folds of training, validation, and test dataset were determined with the proportion of 0.6, 0.2, and 0.2, respectively. First, “temporal training” vs. test dataset splitting was performed (the ratios of 0.8 and 0.2, respectively). Then, the “temporal training dataset” was split into training and validation dataset (the ratios of 0.75 and 0.25, respectively).
In the training set and validation set, under-sampling was performed to alleviate class imbalance problems. For example, when the sample sizes of subjects labeled as HV, AD, DLB, and iNPH were 37, 58, 42, and 37, respectively, 37 subjects from each group were randomly sampled.

S4.2 Segment-level Classification
[bookmark: _Hlk117585187]An segment-level classifier (MNet or Catboost) was trained on a training dataset (see also Method S2 or S3). The segment-level classifier was trained on the training data and used to acquire the posterior probabilities of EEG segments in the validation and test data belonging to dementia classes (HV, AD, DLB, and iNPH; Eq 1–2, ).

S4.3 Subject-level classification
A subject-level classifier (Ridge classifier) was trained on the validation dataset. The input features were engineered by taking mean of posterior probability vectors(Eq 1–2, ) by subject. Then, the trained subject-level classifier was used to acquire the posterior probability of subjects in the test data belonging to dementia classes (HV, AD, DLB, and iNPH).

( 3 )
, where   is the posterior probability for disease type classification task of a subject;   is the mean posterior probability of EEG segments of the subject;  is the number of classes in a task.

S5 Reject option
[bookmark: _Hlk117779739]Reject option is one of the machine-learning techniques, which offers a way to avoid making decisions on difficult cases[4]. The reject option is an ideal technique for automatic diagnosis or subject-level classification. It may be valid with the assumptions that (i) not all EEG segments are required to be predicted well, (ii) not all dementia-related diseases might appear their characteristic signals all the time, and (iii) EEG is contaminated with noises. Under these prepositions, the reject option offers a way to sort out low-quality segments for diagnosing subjects. 
We optimized and defined a reject rule in a fold using the validation dataset, considering three parameters described later (S5.1–S5.3). Specifically, the balanced accuracy score of the validation dataset was maximized with remaining most of subjects to predict.

S5.1 The maximum value of the posterior probability of an EEG segment was acquired:

( 4 )
, where  is the the i-th element of , which represents the posterior probability for the EEG segment to belong to the i-th class; and  is the number of classes. The first parameter for determining the reject rule was the threshold for , which was grid-searched as 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0.

S5.2 The perplexity of the posterior probability of an EEG segment was calculated as follows:

( 5 )
The second parameter for determining the reject rule was the upper threshold for , which was grid-searched as 1.0, 1.5, …, and .

S5.3 The third parameter for determining the reject rule was the coverage of each subject in the validation dataset was defined as:

( 6 )
, where  and  are the number of 2-sec EEG segments of  subject before and after applying the reject option, respectively. When a coverage of any subject was 0, or when the subject-level prediction would not be defined for the subject, the reject rule was not adopted.


Results
2-sec Segment-level classification of dementia using MNet
We classified 2-sec EEG signals corresponding to three types of dementia (AD, DLB, and iNPH) and the healthy subjects by MNet. The discriminative scores among the subject groups were summarized in Table S2. Even using the randomly selected 2-sec segments, three types of dementia were successfully discriminated with group-balanced accuracy of 55.5% (Table S2).

Table S2. 2-sec segment-level classification accuracy using MNet
	Balanced Accuracy
	0.555 +/- 0.036
	0.747 +/- 0.068
	0.902 +/- 0.024
	0.867 +/- 0.042
	0.827 +/- 0.044
	0.683 +/- 0.031
	0.585 +/- 0.032

	ROC AUC 
	0.781 +/- 0.025
	0.831 +/- 0.072
	0.966 +/- 0.013
	0.943 +/- 0.029
	0.902 +/- 0.039
	0.742 +/- 0.036
	0.741 +/- 0.034

	　Classification task
	HV vs AD vs DLB vs iNPH
	HV vs AD
	HV vs DLB
	HV vs iNPH
	HV vs AD+DLB+iNPH
	AD vs DLB
	AD vs DLB vs iNPH


The table summarizes the area under the receiver-operator curves (ROC AUC) and the balanced accuracy of classification tasks. For multi-class comparisons, macro average scores were adopted as metrics (see Methods, Eq. 1–3 in the main article). 

Visualization of 4-class Classification
  Segment-level classification can be regarded as a supervised pre-training to obtain feature vectors from 2-sec raw EEG signals. Here, we visualized the result of the 4-class classification task in a 3D plot (Supplementary video S1). 

Analysis of the neurophysiological characteristics of EEG among study group
One-way ANOVA tests were performed under the null hypothesis that there were no differences among the means of the four groups (three dementia classes and healthy volunteers) on each channel and frequency band. Normalized FFT power was adopted as the dependent variable. The F-values with three degrees of freedom are displayed as color maps. δ: 0.5 – 4 Hz, θ: 4 – 8 Hz, lowα: 8 – 10 Hz, highα: 10 – 13 Hz, β: 13 – 32 Hz, γ: 32 – 75 Hz. (Figure S1)
[image: ]Figure S1. Comparison of EEG frequencies among study group
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