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Materials and Methods, and Supplementary Text

1) Meta-analysis to detect MDD-associated candidate genes
We adopted linear models to account for potential confounding covariates and applied a meta-analysis pipeline to combine eight studies for identification of 566 MDD-associated candidate genes. The methods described below have been published in a previous method paper [1]. 
a) Single study analysis of MDD-related differential gene expression
The individual study analysis to detect candidate marker genes involves two major components: random intercept model (RIM) and variable selection. In our previous publication, real data analysis and simulation showed improved statistical power and accuracy when applying the two techniques [1].
Random intercept model (RIM).To account for the paired design and for the existence of several MDD-related covariates, we applied a random intercept model (RIM). For a given gene g, we fit the model:
.
In the model,  was the gene expression value of gene  (1≤g≤G) and disease status (i=1 for control and 2 for MDD) in sample pair  (1≤k≤K).  was the disease label that took the value of one if the sample was from MDD patients and zero if the sample was a paired control.  represented values for potential confounding covariate l (1≤l≤7; 0-1 binary for alcohol dependence, antidepressant drug use and death by suicide, and numerical for age, pH and PMI).  was the random intercept from a normal distribution with mean zero and variance , which represented the deviation of averaged expression values in the kth pair from the average of the whole population. Finally,  were independent random noises that followed a normal distribution with mean zero and variance . Under this model,  was the disease effect of gene g and represented the parameter of major interest. To obtain an MDD-associated biomarker candidate list in a single study analysis, likelihood ratio test was used to assess the p-values of testing  (vs ). The p-values were then corrected by Benjamini-Hochberg procedure [2] for multiple comparisons. In our previous publication [1], we demonstrated using simulation and real data that including the random effects  improved the statistical power.
Variable selection for RIM. Although the RIM model can effectively adjust for confounding covariates in detecting differential gene expression, the small sample size (9-21 pairs per study) and relatively high number of potential confounders (up to seven covariates) can make the model inefficient or inestimable. We have developed and evaluated a variable selection procedure in the random intercept model (namely, RIM_BIC). Specifically, all possible RIM models that included at most two (i.e. 0, 1 or 2) clinical variables were computed and compared. The model with the smallest Bayesian Information Criterion (BIC) [3] value was selected. This additional variable selection avoided the inclusion of more than 2 clinical variables in the model and allowed the inclusion of different sets of covariates for each gene, which offers more relevant biologically conclusions and interpretations (e.g., gene A is confounded by alcohol dependence while gene B is confounded by drug exposure). Similar to RIM model, likelihood ratio tests were used to generate p-values of testing  in each gene for the selected model by BIC. 
The obtained p-values from the best BIC model were, however, not correct p-values for differential expression since they were biased by the variable selection procedure and the type I error control was voided (Figure S1). The skewed null distribution deviating from uniform distribution between 0 and 1 showed the need of a permutation analysis for p-value correction. As a result, we performed a permutation analysis that randomly shuffled the disease labels within each pair to generate a null distribution for p-value assessment (B=500). Subsequently, the permutation-corrected and unbiased p-values were further adjusted by Benjamini-Hochberg procedure for multiple comparisons within each study to control the false discovery rate (FDR). Table S4 shows the number of differentially-expressed (DE) genes detected under raw p-value threshold at 0.001 and FDR=0.05, 0.1, 0.15 and 0.2 using naïve paired t-test (PT) and RIM_BIC model in individual analysis. At p<0.001 threshold, RIM_BIC model detects many more genes than PT. However, when controlled by FDR at 20% threshold, almost no genes were detected except for MD2_DLPFC_F and MD3_AMY_F studies. This motivates the following meta-analysis approaches to combine information of the eight studies to increase statistical power and obtain consistent candidate markers. 
b) Meta-analysis of MDD-related differential gene expression in eight gene array studies
Many microarray meta-analytical methods are available in the literature, and each has its pros and cons, depending on the data structure and biological goal [4, 5]. In this study, we combine two approaches, based on their complement biological assumptions: (i) The rth ordered p-value with one-sided correction (rOP-OC) method [6] detected genes that are differentially expressed in at least 5 out of 8 studies and with consistent direction of changes (up-regulated or down-regulated) in majority of studies; (ii) The random effects model (REM) detected genes by combining gene effects across all studies.
The rth ordered p-value with one-sided correction (rOP-OC)







The rOP statistic is defined as, where  studies are combined, is the p-value of gene g in study  and pg(r) is the rth order statistics of . This method requires at least r out of K studies to have small p-values for a gene to be detected and it provides robustness when one or few studies are heterogeneous from other studies or contain noisy signal. This is particularly important when combining a large number of array studies, a situation we encounter in this paper. Assuming independence among studies and that p-values are calculated from correct null distributions in each study,follows a Chi-square distribution with  and degrees of freedom under null hypothesis. In our application, we avoided this parametric inference and applied a robust permutation analysis that maintained the gene dependence structure. The original rOP method has a potential issue in candidate marker detection. If the p-values pgk is obtained from two-sided tests, the detected genes may have discordant differentially-expressed direction (i.e. significantly up-regulated in some studies but significantly down-regulated in other studies). As a result, we modified the rOP method with one-sided correction (rOP-OC). Denote bythe p-values from left-sided hypothesis testing (test for down-regulation) for gene g and study k. It is clear that p-values for the corresponding right-sided hypothesis testing (test for up-regulation) is . Denote by  and  the rth order statistics of and , respectively. The rOP-OC method aggregates the left-sided and right-sided p-values respectively to guarantee detection of concordant genes:and . Finally, the test statistic is defined as.



In general, we can convert a two-sided p-value pgk to a left-sided p-value  by  when the estimated effect size is less than zero and  when estimated effect size is positive. Detailed rOP_OC algorithm, its permutation analysis and some theoretical properties can be found in a recent paper [6]. 
Random Effects Model (REM)
REM is a popular method for combining effect sizes in meta-analysis. Choi et al [7] described a procedure to combine effect sizes by inverse variance weighting, where the effect size was defined as the standardized mean difference ,  and  were the means of MDD and control groups, respectively and  indicated an estimation of the pooled variance. In this paper, we estimated the standardized mean difference from the RIM model, instead of the naïve means and pooled variance. The average weighted effect size was estimated as  and  ,where  was the estimated effect size, which was defined as the coefficient of MDD divided by its standard error (i.e.   from RIM model) from single study analysis;   represented the estimated variance of  from the RIM model;   represented the between-study variance, which could be estimated by the method of moments suggested by DerSimonian and Larird [8]: , where ,   ,  ,  , and  was the number of studies. Under the assumption that the gene expression levels were normally distributed, a z-score to test for differentially-expressed genes was constructed as,  , which followed a normal distribution with zero mean and unit variance. The p-values of each gene could then be calculated and subsequent inferences could be made.
Meta-analysis permutation analysis to control within-subject dependence structure.
Although the parametric inference by normal and beta distributions were convenient, we performed a permutation analysis for the inference to avoid the underlying assumptions. Specifically, since some studies were performed in different brain regions of the same subjects, we accounted for this putative dependence structure by keeping the same permutation order for each pair of studies of the same cohort in the permutation analysis of individual studies. Benjamini-Hochberg procedure was then used to control FDR. Table S4 demonstrates the number of differentially-expressed genes detected from single study analyses and meta-analyses. The result clearly shows improved detection power of RIM model compared to paired t-test and meta-analysis compared to single study analysis. Finally, we apply FDR threshold at 20% and take the union set of identified differentially expressed genes from rOP-OC and REM to form a 566 candidate marker genes for the down-stream analysis (Figure S2). The false discovery rate (FDR) was maintained at 25% in order to retain sufficient genes for combining with GWAS studies in the second phase of the study. 
Meta-regression with variable selection (MetaRG_BIC)
Unlike meta-analysis in clinical or epidemiological research where up to hundreds of studies may be available for meta-regression model, only a small number (e.g. 6-10) of studies are available in a common microarray meta-analysis. When the number of study-level variables that potentially contribute to heterogeneity becomes large (greater than 2-3 studies), the regression model is not applicable. It is, however, reasonable to assume that only very small number (e.g. 0 or 1) of variables contribute to the expression heterogeneity in each gene and the contributing variables are gene-specific. This leads to the variable selection approach we adopted here. Specifically, all possible meta-regression models that include at most one (0 or1) study-specific variables are computed and compared. 

Where  is the weight assigned to the th study-level variable and , which belongs to . In our data, we have L=3 study-level variables: gender, brain region and array platform. We denote by  as the Bayesian Information Criterion value associated with the meta-regression model . The adaptive weight   is then defined as: , which serves as a convenient basis for gene categorization in follow-up biological interpretations and explorations. Based on the selected model , likelihood ratio test is applied to test 
versus 
to derive the p-value of gene g. This added variable selection avoids including more than one study-specific variable in the model and allows assessment of biomarkers related to different study-specific variable ( e.g. gene A might be related to gender while gene B might be related to brain region or platform), which biologically gives a more appealing conclusion and interpretation. Since the raw p-value for differential expression are biased from the variable selection procedure, we performed a permutation test that randomly permuted the disease labels within each pair to assess the statistical significance of the meta-regression (metaR) effect. 
Forest plots for visualization
A forest plot is a graphical display designed to illustrate the relative strength of disease effects across multiple studies addressing the same question. The summary effect of each study is depicted as a point estimate bounded by its 95% confidence interval, represented by horizontal lines. The plot shows if the overall effect is based on many studies or a few, on studies that are precise (study with small variance) or imprecise (study with large variance), and whether the effects for all studies tend to line up, or if they vary substantially from one study to the next. The plot can also highlight anomalies and outliers. The left-hand columns list the names of the studies and the effect size values. The summarized effect is plotted as a diamond, which is shown on the bottom line with the associated REM p-value. The lack of overlap with the vertical no-effect line (effect size=0) for the summarized diamond indicates statistical significance of the meta-analysis. Forest plots for all analyzed genes are freely available at the following interactive website: https://research.psychiatry.upmc.com/SibilleMDD8/

2) Meta-analysis of gene coregulation network properties 
Gene co-expression networks are increasingly used to explore the systems-level functionality of genes, where nodes represent genes and nodes are connected if the genes are significantly co-expressed (e.g. measured by correlation) above a certain threshold. To further investigate the 566 MDD disease candidate genes and to quantify their network properties compared to random subnetworks in the genome, we constructed unweighted gene coexpression networks based on the Pearson correlation in disease samples only, in control samples only, and in combined disease and control samples. From the literature [9], most inferred biological networks have connectivity of ~1% out of all possible [(n2-n)/2; n the total number of nodes] connections between nodes. Here, we applied thresholds so that exactly 1% of all possible edges were connected, which enabled comparable evaluations across multiple networks at later steps. 
We first overlaid the 566 genes on the full networks of all genes covered in our study after preprocessing (10,680 genes) and investigated whether the MDD disease genes displayed increased degrees (i.e. more connections), compared to other genes, based on the observations in organ and system diseases, where disease candidate genes have been associated with highly connected hub genes in the network [10]. We calculated the mean degree of the 566 genes, i.e. the average number of coexpressed links of the 566 genes among all 10,680 investigated genes. For comparison purpose, we randomly sampled 566 genes from the same 10,680 genes and calculated the mean degree of that gene set. This procedure was repeated 1000 times in order to obtain a null distribution, with the null hypothesis stating that the mean connectivity of MDD candidate genes is the same as that of randomly selected genes of the same size.  P-values were assessed using one-sided test with the null hypothesis being the disease network has larger network property e.g. mean degree compared to random networks for each of the eight transcriptome studies. The eight results are further combined using Fisher’s meta-analysis method (Figure 2 and Table S6). 
We also calculated three other network measures: mean clustering coefficient, mean betweenness centrality, and assortativity for the network constructed from the 566 genes (Tables S7-9).  The clustering coefficient (CC) measures the local community structure which ranges from 0 (neighboring nodes unconnected) to 1 (all neighboring nodes connected to each other). For example, when a given vertex vi has ki neighbors with a total of ei edges among the neighbors, the clustering coefficient is defined as the ratio of observed edges among all possible edges:


Comparison of mean network clustering coefficient between networks of 566 MetaA-MDD genes and random networks of the same size are summarized in Table S7.
Betweenness centrality (BC) measures the extended influence of a network node, and quantifies how many shortest network paths intersect a given node. The formula for a given node vi is: 




where is defined as the number of shortest paths from node j to node k that pass through node vi, and  is the total number of shortest path from j to k (Table S8).
Assortativity (r) quantifies the tendency that an edge will connect two nodes of similar degree. The measure is defined as the Pearson correlation coefficient of degrees between all pairs of linked nodes. As a result, r lies between -1 and 1. When r=1, the network has perfect assortative mixing patterns and when r=-1 the network is completely disassortative (Table S9).


9) Overlap of 566 MetaA-MDD genes with disease associated single nucleotide polymorphisms (SNP) from Genome-wide association studies (GWAS) 
GWAS seek associations between SNPs and traits or disorders. Since GWAS in MDD have provided flat signals [11, 12], we turned to compare the 566 MDD associated genes with disease associated SNPs in the GWAS Catalog database (http://www.genome.gov/gwastudies/). The database (as of 02/04/14; time of the latest data analysis update) contained 15579 entries of disease- or trait-associated SNPs with p-values smaller than 110-5 in 1,796 GWAS studies. We manually regrouped the disorders and traits into 13 categories: (1) Neurological disorders & other brain phenotypes, (2) Neuropsychiatric disorders, (3) MDD-related, (4) Medical illnesses related to MDD, (5) Cardiovascular disease & related traits, (6) Aging (7) Metabolic syndrome & related traits, (8) Immune system, Inflammation (excluding AIDS), (9) Other medical illnesses not related to MDD (10), Cancer (11), and Miscellaneous body measures (12). Due to the nested and overlap in some of the categories, we further tested the following gene groups:  (1)-(2) and (6)-(2). See Table legend in main text. The enrichment p value by Fisher’s exact test for each of the 1796 studies was calculated and combined by fisher meta-analysis method for each of the 13 categories as the test statistics.  The associated p value was calculated from randomly selecting the same number of studies and calculated the combined p values 10000 times as the null distribution. (Table 1. We also performed other criteria to assign SNPs to genes 50KB, 100KB, 200KB upstream or downstream windows (Table S11). Details of related genes and SNPs are in Table S12.

Supplementary figure/table legends

Fig. S1. Simulated null distributions of disease effect p-value in the best model (RIM_BIC) from permutation analysis in 5 MDD studies. The result shows bias (deviation from uniform distribution) caused by the selection of variables included.

Fig. S2. Venn diagram to obtain 566 candidate marker genes from rOP-OC and REM at FDR=25%.

Fig. S3. Correlation between array results and qPCR for genes previously investigated in single cohort studies : CACNB2, CAMK2D, ARHGAP6, DGKG, EGR1, NPTX1, RPH3A, MATN2, KCTD12, CPNE9, MBP, AGA, CNP, BCAS1, ENPP2, EDG2, MOBP. R=0.95, p= 0.001 [1, 13-15]. 

Table S1. Data description of eight MDD microarray studies. Cohorts were previously described in [1, 13-15]. Adjustments to the original cohorts were made to avoid overlap in subjects within a brain area. 

Table S2. Individual subject description. The presence of objects in different studies was accounted for in the permutation-based approaches (section 3).

Table S3. Data pre-processing and numbers of genes investigated.

Table S4. Number of detected differentially-expressed (DE) genes from individual study analysis (using RIM model or paired t-test; PT) and meta-analysis (using RIM model or paired t-test).

Table S5. 566 MetaA-MDD genes. 

Table S6. Comparison of mean network degree between networks of 566 MetaA-MDD genes and random networks of same size. “Average null control”, “average null disease” and “average full” denote the average of the mean degree of 1000 random networks for control network, disease network and combined network respectively for each study. “True control” and “True disease” and “True full” indicates the mean degree of DE networks for control network, disease network and combined network respectively. The table shows the mean degrees of DE networks are significantly smaller than the random networks of the same size for control samples, disease samples and both.

Table S7. Comparison of mean network clustering coefficient between networks of 566 MetaA-MDD genes and random networks of same size. “Average null control”, “average null disease” and “average full” denote the average of the mean clustering coefficients of 1000 random networks for control network, disease network and combined network respectively for each study. “True control” and “True disease” and “True full” indicates the mean clustering coefficients of DE networks for control network, disease network and combined network respectively. The table shows overall the mean clustering coeffients of DE networks are smaller than the random networks of the same size for control samples, and both with combined p value less than 0.05.

Table S8. Comparison of mean betweenness centrality between networks of 566 MetaA-MDD genes and random networks of same size. “Average null control”, “average null disease” and “average full” denote the average of the mean betweenness centrality of 1000 random networks for control network, disease network and combined network respectively for each study. “True control” and “True disease” and “True full” indicates the mean betweenness centrality of DE networks for control network, disease network and combined network respectively. The table shows the mean betweenness centrality of DE networks are not significant different from the random networks of the same size for control samples, disease samples 

Table S9. Comparison of Assortativity between networks of 566 MetaA-MDD genes and random networks of same size. “Average null control”, “average null disease” and “average full” denote the average of the Assortativity of 1000 random networks for control network, disease network and combined network respectively for each study. “True control” and “True disease” and “True full” indicates the Assortativity of DE networks for control network, disease network and combined network respectively. The table shows that null hypothesis cannot be rejected and Assortativity of DE networks are not significantly different from the random networks of the same size for control samples, disease samples and both.

Table S10. Catalog of GWAS disease categories 

Table S11. MetaA-MDD and GWAS-identified genes overlap: results from 20-200kb genomic windows. 

Table S12. MetaA-MDD and GWAS-identified genes overlap: Details of SNPs and Genes 
(Separate downloadable excel table)
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Fig. S2
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Table S1. Data description of eight MDD microarray studies
See also previous reports on the cohorts and datasets [13, 15-17]

	Study name
	Gender
	Brain region
	Sample size
	Array platform

	1-MD_ACC_M
	Male
	ACC
	32 (16 pairs) 
	Affy. HG-U133 Plus 2

	2-MD_ACC_M
	Male
	ACC
	18 (9 pairs)
	Affy. HG-U133 Plus 2

	3-MD_ACC_F
	Female
	ACC
	26 (13 pairs)
	Affy. HG-U133 Plus 2

	4-MD_ACC_F
	Female
	ACC
	40 (20 pairs)
	IlluminaHumanHT-12

	5-MD_AMY_M
	Male
	AMY
	28 (14 pairs)
	Affy. HG-U133 Plus 2

	6-MD_AMY_F
	Female
	AMY
	40 (20 pairs)
	IlluminaHumanHT-12

	7-MD_DLPFC_F
	Female
	DLPFC
	30 (15 pairs)
	Affy. HG-U133 Plus 2

	8-MD_DLPFC_M
	Male
	DLPFC
	28 (14 pairs)
	Affy. HG-U133 Plus 2



Table S2. Individual subject description.
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Table S3. Data pre-processing and numbers of genes investigated.

	Study
	1-MD_ACC_M
	2-MD_ACC_M
	3-MD_ACC_F
	4-MD_ACC_F
	5-MD_AMY_M
	6-MD_AMY_F
	7-MD_-DLPFC_M
	8-MD_DLPFC_F

	Before
match
	40610
	53596
	53596
	48803
	40610
	48303
	53596
	53596

	After
match
	19621
	19572
	19572
	25159
	19621
	25159
	19572
	19572

	Common
	16689 genes

	After
filtering
	10680 genes (20%MV; 20%SD) = 16689 x 0.8 x 0.8





Table S4. Number of detected differentially-expressed (DE) genes from individual study analysis (using RIM model or paired t-test; PT) and meta-analysis (using RIM model or paired t-test).


	
	Individual  study analysis 
	Meta-analysis

	
	MD2_DLPFC_M
	MD1_ACC_M
	MD2_ACC_M
	MD1_AMY_M
	MD2_DLPFC_F
	MD3_ACC_F
	MD2_ACC_F
	MD3_AMY_F
	rOP-OC
	REM
	Union of REM and rOP-C

	PT

	p=0.001
	13
	6
	39
	4
	26
	22
	11
	22
	10
	78
	88

	
	FDR=0.05
	0
	0
	0
	0
	0
	0
	0
	0
	0
	9
	9

	
	FDR=0.1
	0
	0
	2
	0
	0
	0
	0
	0
	0
	55
	55

	
	FDR=0.15
	1
	0
	5
	0
	0
	0
	0
	0
	0
	87
	87

	
	FDR=0.2
	1
	0
	13
	0
	0
	0
	0
	0
	0
	121
	121

	RIM_BIC
	p=0.001
	33
	18
	34
	12
	87
	34
	31
	188
	67
	99
	153

	
	FDR=0.05
	0
	0
	0
	0
	0
	0
	0
	143
	0
	0
	0

	
	FDR=0.01
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	94

	
	FDR=0.15
	0
	0
	7
	0
	268
	6
	0
	1243
	65
	122
	171

	
	FDR=0.2
	0
	0
	9
	0
	847
	6
	0
	1767
	358
	155
	566






Table S6. Comparison of mean network degree between networks of 566 MetaA-MDD genes and random networks of same size.
	
	C_MD2_DLPFC_M
	MD1_ACC_M
	C_MD2_ACC_M
	MD1_AMY_M
	C_MD2_DLPFC_F
	MD3_ACC_F
	C_MD2_ACC_F
	MD3_AMY_F
	combined p value

	average_null_control
	107
	107
	107
	107
	108
	107
	106
	107
	

	average_null_disease
	107
	106
	107
	107
	107
	107
	107
	107
	

	average_null_full
	107
	107
	107
	107
	107
	107
	106
	107
	

	true_control
	6.3
	99.3
	106.9
	72.5
	84.3
	96.4
	89.1
	108.1
	

	true_disease
	110.1
	86.6
	113.9
	79.2
	109.1
	101.3
	100.5
	116.7
	

	true_full
	107.2
	93.6
	127.0
	66.3
	90.9
	95.0
	84.3
	117.8
	

	p_degree_control
	0.043956
	0.028971
	0.531469
	0.000999
	0.005994
	0.051948
	0.023976
	0.617383
	7.57702810586024e-06

	p_degree_disease
	0.756244
	0.001998
	0.914086
	0.000999
	0.607393
	0.222777
	0.093906
	0.878122
	0.00291355345803891

	p_degree_full
	0.528472
	0.030969
	0.998002
	0.000999
	0.027972
	0.061938
	0.004995
	0.919081
	0.000115046123271227



Table S7. Comparison of mean network clustering coefficient between networks of 566 MetaA-MDD genes and random networks of same size.
	
	C_MD2_DLPFC_M
	MD1_ACC_M
	C_MD2_ACC_M
	MD1_AMY_M
	C_MD2_DLPFC_F
	MD3_ACC_F
	C_MD2_ACC_F
	MD3_AMY_F
	combined p value

	average_null_control
	0.401
	0.357
	0.354
	0.516
	0.528
	0.378
	0.520
	0.368
	

	average_null_disease
	0.361
	0.489
	0.379
	0.497
	0.476
	0.362
	0.349
	0.436
	

	average_null_full
	0.423
	0.429
	0.378
	0.567
	0.502
	0.390
	0.500
	0.436
	

	true_control
	0.381
	0.297
	0.395
	0.434
	0.484
	0.383
	0.514
	0.360
	

	true_disease
	0.422
	0.415
	0.406
	0.447
	0.436
	0.361
	0.315
	0.432
	

	true_full
	0.463
	0.345
	0.462
	0.515
	0.459
	0.358
	0.469
	0.411
	

	p_clusteringcoefficient_control
	0.239
	0.012
	0.979
	0.021
	0.101
	0.591
	0.429
	0.431
	0.0275278043473103

	p_clusteringcoefficient_disease
	0.9620
	0.0410
	0.8781
	0.0789
	0.1259
	0.4945
	0.1009
	0.4625
	0.10127492120681

	p_clusteringcoefficient_full
	0.9111
	0.0130
	0.9970
	0.0819
	0.1079
	0.1209
	0.2078
	0.2068
	0.0249142100531702




Table S8. Comparison of mean betweenness centrality between true networks and random networks.
	
	C_MD2_DLPFC_M
	MD1_ACC_M
	C_MD2_ACC_M
	MD1_AMY_M
	C_MD2_DLPFC_F
	MD3_ACC_F
	C_MD2_ACC_F
	MD3_AMY_F
	combined p value

	average_null_control
	352.4
	721.5
	756.5
	122.3
	64.6
	249.2
	139.6
	369.4
	

	average_null_disease
	693
	467
	741
	223
	301
	243
	594
	163
	

	average_null_full
	306.3
	385.6
	374.5
	57.6
	165.0
	151.4
	184.4
	145.9
	

	true_control
	349.8
	753.2
	665.7
	96.8
	55.9
	251.5
	36.7
	411.5
	

	true_disease
	637
	470
	791
	166
	254
	246
	545
	202
	

	true_full
	351.5
	421.3
	427.0
	58.8
	194.6
	158.7
	247.5
	140.9
	

	p_betweenness centrality_control
	0.464
	0.763
	0.112
	0.111
	0.272
	0.545
	0.002
	0.888
	0.0378166102986718

	p_betweennesscentrality_disease
	0.1379
	0.5215
	0.7303
	0.0819
	0.1029
	0.5704
	0.1558
	0.9361
	0.201953609510724

	p_betweennesscentrality_full
	0.910
	0.772
	0.905
	0.566
	0.858
	0.666
	0.985
	0.414
	0.995970222756502



Table S9. Comparison of Assortativity between networks of 566 MetaA-MDD genes and random networks of same size.
	
	C_MD2_DLPFC_M
	MD1_ACC_M
	C_MD2_ACC_M
	MD1_AMY_M
	C_MD2_DLPFC_F
	MD3_ACC_F
	C_MD2_ACC_F
	MD3_AMY_F
	combined p value

	average_null_control
	0.450
	0.399
	0.581
	0.404
	0.239
	0.159
	0.403
	0.354
	

	average_null_disease
	0.515
	0.559
	0.595
	0.458
	0.503
	0.237
	0.451
	0.308
	

	average_null_full
	0.3661
	0.4187
	0.4043
	0.2241
	0.2877
	0.0519
	0.3762
	0.2074
	

	true_control
	0.418
	0.396
	0.606
	0.420
	0.265
	0.167
	0.333
	0.309
	

	true_disease
	0.596
	0.582
	0.614
	0.489
	0.410
	0.197
	0.466
	0.256
	

	true_full
	0.418
	0.396
	0.606
	0.420
	0.265
	0.167
	0.333
	0.309
	

	p_assort_control
	0.1868
	0.5075
	0.8212
	0.6533
	0.7133
	0.5994
	0.0519
	0.2188
	0.411193868978631

	p_assort_disease
	0.9660
	0.7173
	0.7512
	0.7702
	0.0240
	0.1698
	0.6643
	0.0879
	0.294561594510445

	p_assort_full
	0.864
	0.329
	1.000
	1.000
	0.319
	0.982
	0.159
	0.982
	0.930536218017689
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HU #

Subject Group

DSM-IV 

Diagnoses

MOD

COD

SexAge

Race

PMI

pH

RNA ratio

RIN

Hand 

Preference

Meds ATOD

Tob ATOD

MD1-ACC-MMD2-ACC-M

MD2-ACC-FMD3-ACC-F

MD1-AMY-M

MD3-AMY-F

DLPFC-M

DLPFC-F

615ControlnoneNaturalRuptured Abdominal Aortic 

Aneurysm

M62W7.26.401.357.80RNN111

789ControlnoneAccidenta

l

Asphyxiation M22W20.17.002.007.80RNN111

795ControlnoneNaturalRuptured Abdominal Aortic 

Aneurysm

M68W11.86.801.608.20RNN111

1031ControlnoneNaturalASCVDM53W23.26.801.508.90RNN1111

604ControlnoneNaturalHypoplastic Coronary 

Artery

M39W19.37.102.118.60RNN11

685ControlnoneNaturalHypoplastic Coronary 

Artery 

M56W14.57.101.708.10ROU11

713ControlnoneNaturalASCVDM58W37.57.001.558.40UUY11

736ControlnoneNaturalASCVDM54W15.56.901.568.30LNN11

852ControlnoneNaturalCardiac TamponadeM54W8.06.901.799.10RNY11

857ControlnoneNaturalASCVDM48W16.66.702.038.90LNY11

1047ControlnoneNaturalASCVDM43W13.86.601.839.00RON11

1067ControlnoneNaturalHypertensive Heart 

Disease

M49W6.06.601.448.20RON11

1086ControlnoneNaturalASCVDM51W24.26.801.368.10RNY11

1122ControlnoneNaturalCardiac TamponadeM55W15.46.701.407.90ROY11

546ControlnoneNaturalASCVDF37W23.56.702.008.60UUU111

567ControlnoneNaturalMitral Valve ProlapseF46W15.06.802.308.90RNU111

575ControlnoneNaturalASCVDF55B11.36.801.809.60RUU111

1034ControlnoneNaturalEndocardial fibroelastosisF23W8.57.002.007.80RNN111

1092ControlnoneNaturalMitral Valve ProlapseF40B16.66.801.708.00RON111

1247ControlnoneNaturalASCVDF58W22.76.401.308.40RO N111

1282ControlnoneNaturalASCVDF39W24.56.801.307.50RNN111

1391ControlnoneNaturalASCVDF51W7.86.601.607.10LOY111

1403Control

Adjustment Disorder with mixed anxiety & 

depressed mood, in remission (8 months)

NaturalASCVDF45W12.36.701.808.20ROY111

1466ControlnoneAccidentalTraumaF64B20.06.702.008.80RON111

1196ControlnoneAccidenta

l

AsphyxiationF36W14.56.401.808.20RON111

568ControlnoneNaturalASCVDF60W9.56.901.908.70RNU11

627ControlnoneNaturalCOPDF43B14.17.101.007.00RON11

818ControlnoneAccidentalAnaphylactic reactionF67W24.07.101.508.40RO N11

840Control

Adjustment Disorder with depressed mood, 

current; Alcohol Abuse, in remision (20 years)

NaturalASCVDF41W15.46.802.009.10RNY11

1081ControlAlcohol Abuse, in remission (20 years)NaturalCOPDF57W14.96.801.809.00RB ON11

1099ControlnoneNaturalCardiomyopathyF24W9.16.501.908.60ROY11

1280ControlnoneNaturalPulmonary 

thromboembolism

F50W23.56.701.307.70UUU11

1355ControlnoneNaturalSubarachnoid hemorrhageF74W24.96.601.907.00RON11

10013ControlnoneAccidentalTraumaF16W9.36.701.809.00RON11

1129ControlnoneNaturalASCVDM54W21.06.801.509.00RNN11

1317ControlnoneNaturalASCVDM56W22.96.501.208.80LOY11

1372ControlnoneAccidenta

l

Asphyxiation M37W20.56.601.609.00UOU11

1394ControlnoneNaturalASCVDM45W17.36.601.907.30RNN11

1439ControlnoneNaturalSubarachnoid hemorrhageM56W16.16.802.107.70ROY11

1444ControlnoneNaturalPulmonary 

Thomboembolus

M46W22.06.502.108.40RNN11

1462ControlnoneNaturalASCVDM47W17.26.602.008.50RNN11

612ControlnoneAccidenta

l

AspirationM60W9.6

6.80

1.509.00RNU1

1214ControlnoneNaturalASCVDM57W16.46.401.707.50RON1

1447ControlnoneNaturalASCVDM51W16.2

6.50

1.808.50RNN1

686ControlnoneNaturalASCVDF52W22.67.101.908.50ROY11

731ControlnoneNaturalASCVDF63W10.56.801.608.20LNY11

1293ControlnoneAccidentalTraumaF65W18.56.601.307.00RNN11

1270ControlnoneAccidenta

l

TraumaF73W19.76.701.407.70RON11

634ControlnoneNaturalASCVDM52W16.27.001.908.50LNU1

1374ControlnoneNaturalASCVDM43W21.76.601.807.20ROY1

505MDD

Major Depressive Disorder, recurrent, severe 

without psychotic features; ADC

SuicideGunshotM57W12.87.101.808.90RNY111

513MDD

Major Depressive Disorder, recurrent, severe with 

psychotic features; ODC

SuicideHangingM24W13.16.901.909.00RNY111

868MDD

Major Depressive Disorder, recurrent, severe 

without psychotic features; ADC; OAC

AccidentalTraumaM47W10.56.801.509.30MNN111

598MDD

Major Depressive Disorder, single episode, severe 

without psychotic features; OAR

SuicideGunshotM69W5.97.301.618.80RD OY11

600MDD

Major Depressive Disorder, single episode, severe 

without psychotic features

SuicideHangingM63W9.96.701.717.10RON11

698MDD

Major Depressive Disorder, single episode, severe 

with psychotic features

SuicideHangingM59W13.06.801.509.00RD O PN11

783MDD

Major Depressive Disorder, recurrent, in full 

remission

NaturalDissection of the aortaM63W11.56.501.368.80RON11

809MDD

Major Depressive Disorder, single episode, in full 

remission

NaturalASCVDM50W20.06.901.528.50RD OY11

863MDD

Major Depressive Disorder, single episode, severe 

without psychotic features

NaturalASCVDM51W28.37.301.528.40RNN11

926MDD

Major Depressive Disorder, single episode, severe 

without psychotic features; AAR

Natural

Arteriosclerotic and 

Hypertensive Heart 

Disease

M56W19.07.001.387.30RD OY11

943MDD

Major Depressive Disorder, recurrent, in partial 

remission; ADC; OAC; ODR

SuicideGunshotM56W15.46.601.498.20ROY11

1001MDD

Major Depressive Disorder, single episode, in full 

remission

Natural

Arteriosclerotic and 

Hypertensive Heart 

Disease

M53W7.36.601.387.60ROY11

1060MDD

Major Depressive Disorder, single episode, in full 

remission; AAC

SuicideHangingM30W11.16.601.328.30RON11

1049MDD

Major Depressive Disorder, single episode, severe 

without psychotic features

NaturalCardiomyopathyM48W5.46.601.458.40RD ON1

803MDD

Major Depressive Disorder, recurrent, in partial 

remission

AccidentalTraumaF65W18.07.001.909.00RD ON111

934MDD

Major Depressive Disorder, recurrent, severe with 

psychotic features

NaturalASCVDF54W17.96.501.208.20RD ON111

967MDD

Major Depressive Disorder, recurrent, moderate; 

ADC

NaturalASCVDF40W22.26.601.607.40RNY111

986MDD

Major Depressive Disorder, recurrent, severe 

without psychotic features

NaturalBronchial asthmaF53W11.96.701.808.70RD ON111

1041MDD

Major Depressive Disorder, recurrent, severe with 

psychotic features; AAC; ODC

AccidentalCombined drug overdoseF52W10.36.501.508.40RB D O PY111

1157MDD

Major Depressive Disorder, recurrent, severe 

without psychotic features

SuicideHangingF26W13.46.401.507.80RDN111

1190MDD

Major Depressive Disorder, recurrent, severe 

without psychotic features; ADC

SuicideAsphyxiationF47W22.36.601.608.00RNY111

1221MDD

Major Depressive Disorder, recurrent, severe 

without psychotic features

NaturalPulmonary thrombosisF28B24.86.601.807.20RNN111

1249MDD

Major Depressive Disorder, recurrent, moderate; 

ODR

AccidentalCombined drug overdoseF40W11.26.502.009.00MB C D OY111

1254MDD

Major Depressive Disorder, recurrent, severe 

without psychotic features

SuicideIncised woundsF39W12.86.401.909.00RDN111

1408MDD

Major Depressive Disorder, recurrent, severe 

without psychotic features; ADC

AccidentalTraumaF37W15.56.601.607.00RB D ON111

564MDD

Major Depressive Disorder, single episode, severe 

with psychotic features

SuicideHangingF56W16.87.001.909.20RB D OY11

666MDD

Major Depressive Disorder, single episode, in 

partial remission

AccidentalTraumaF16W10.07.302.009.40RDN11

1202MDD

Major Depressive disorder, recurrent, in partial 

remission

Natural Pulmonary embolismF39W11.26.401.808.00RD OY11

1289MDDMajor Depressive Disorder, single episode, mildNaturalASCVDF46W25.06.301.407.30RUN11

1315MDD

Major Depressive Disorder, single episode, severe 

without psychotic features; AAC

SuicideHangingF28W12.47.001.507.90L NY11

1332MDD

Major Depressive Disorder, recurrent, in partial 

remission; ADR; ODC

NaturalASCVDF46W17.56.701.608.90RB D OY11

1356MDD

Major Depressive Disorder, recurrent, in partial 

remission; AAC

AccidentalIntraperitoneal hemorrhageF60W20.66.101.808.50RD ON11

1360MDD

Major Depressive Disorder, single episode, severe 

without psychotic features; ODC

SuicideDrowningF59W18.16.401.407.60RDY11

10028MDD

Major Depressive Disorder, single episode, severe 

without psychotic features

SuicideGunshot F72W23.16.701.407.00RON11

613MDD

Major Depressive Disorder, recurrent, severe with 

psychotic features; AAR

SuicideGunshotM59W15.67.001.909.10RON11

1013MDD

Major Depressive Disorder, recurrent, severe 

without psychotic features

SuicideNailgun woundM46W16.16.301.508.00RNN11

1161MDD

Major Depressive Disorder, recurrent, in partial 

remission; ADR

Natural ASCVDM57W15.96.602.007.60UD OY11

1253MDD

Major Depressive Disorder, recurrent, in partial 

remission; ADC; ODC

NaturalASCVDM58W12.56.801.908.10RC D OY11

1261MDD

Major Depressive Disorder, recurrent, moderate; 

ADC; ODC; OAR

AccidentalElectrocutionM46W22.86.601.908.80RD ON11

1312MDD

Major Depressive Disorder, recurrent, severe 

without psychotic features; ADR; ODC

AccidentalCombined drug overdoseM51W24.66.501.608.50RON11

1320MDD

Major Depressive Disorder, recurrent, moderate; 

ADC

NaturalASCVDM55W24.46.501.307.20RNY11

10010MDD

Major Depressive Disorder, recurrent, severe with 

psychotic features; AAR

SuicideAmitriptyline overdoseM42W14.36.401.807.60RC D ON11

10031MDD

Major Depressive Disorder, recurrent, severe 

without psychotic features; ADC; OAR

AccidentalCombined drug overdoseM36W20.06.802.008.90RC D PY11

1389MDD

Major Depressive Disorder, recurrent, severe 

without psychotic features; ADC

NaturalASCVDM61W16.06.601.908.40RNN1

10012MDD

Major Depressive Disorder, recurrent, severe 

without psychotic features; ODC

SuicideHangingM49W24.26.401.508.80ROY1

1143MDD

Major Depressive Disorder, recurrent, severe 

without psychotic features; ADR; ODC

AccidentalCombined drug overdoseF49W23.46.401.808.10RB D OY11

565MDD

Major Depressive Disorder, recurrent, severe 

without psychotic features; AAC; ODR

SuicideGunshotF62W12.56.902.009.20LDN11

1272MDD

Major Depressive Disorder, recurrent, unspecified; 

ADC; ODC

AccidentalAsphyxiationF64W12.16.601.407.80RB C D OY11

860MDD

Major Depressive Disorder, recurrent; severe with 

psychotic features

NaturalASCVDF74W22.87.001.208.10RB D O PY11

619MDD

Major Depressive Disorder, severe without 

psychotic features; ODR

SuicideGunshotM55W18.86.901.337.90LB DY1

1226MDD

Major Depressive Disorder, recurrent, severe 

without psychotic features; ODC; ODR; OAC; OAR

NaturalASCVDM44W19.36.501.707.50RNY1
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