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Supplementary materials 

CNV calling 

CNVs were called by CNVPartition v1.2.1, which is a plug-in for the Illumina BeadStudio 

Module. For PennCNV and QuantiSNP v1.1, the recommended settings were used to 

call CNVs, and implemented wave adjustment procedure was used to adjust genomic 

waves. QuantiSNP v1.1 provided support for non-polymorphic copy number probes. We 

removed all CNVs called by QuantiSNP if their Log Bayes Factor (LBF) was less than 10, 

as recommended by QuantiSNP.  

 

PennCNV reports log R ratio standard deviation (LRR_SD), B allele frequency drift 

(BAF_Drift) and waviness factor (WF) for quality control. We used the following criteria to 

look for good samples (http://www.yale.edu/state/Pipeline.htm). 

1. LRR_SD < 0.28 

2. BAF_Drift <0.01  

3. WF > -0.05 and < 0.05  

If a subject satisfied these criteria, it was considered a sample with good quality. 

Similarly, QuantiSNP reports B allele frequency outliers (BAFout), LogR standard 

outliers (LogRout), B allele frequency standard deviation (BAFstd) and LogR standard 

deviation (LogRstd) for each chromosome. The following criteria were used to determine 

good quality.  

1. BAFout ≤ 0.1 

2. LogRout ≤ 0.1 

3. BAFstd ≤ 0.2 

4. LogRstd ≤ 0.4 

For any subject, if one or more autosomal chromosomes did not satisfy these criteria, 

the sample was considered poor quality.  

 

In order to pass quality control, a sample and its replication had to be considered as 

good quality by both PennCNV and QuantiSNP. After quality control, 96 subjects and 

their replication data passed the filter. CNVpartition does not provide any quality control 

information for individual subjects.  
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In these samples, we identified 2348 potential regions across the genome for deletions 

and 851 potential regions for duplications. For any particular potential region, at least 

one of these 96 subjects had a duplication or deletion in this region. We restricted our 

study to only these potential regions.  

 

 

Theoretical Model 

The model is derived from our previous work on psychiatric disorder diagnoses [1,2]. For 

some psychiatric disorders, the symptoms are not stable, and similar to CNV calling, the 

diagnoses may not be accurate. Whether a positive diagnosis at time point 1 can be 

confirmed at time point 2 is determined by sensitivity and specificity. And this information 

can be used to estimate sensitivity and specificity per se. Similarly in this study, we used 

the result of CNV calling from replication samples to estimate sensitivity and specificity.  

We realized that testing the validity of each CNV is unfeasible on a genome wide scale. 

We therefore constructed a mathematical model to estimate the probability of being true 

at a larger scale. 

 

For the mathematical model, we defined the reproducibility as being reproduced by any 

of the three algorithms; however, there are arguably several valid ways to do this. Some 

may require a region shared by one, two, and all of the three algorithms. We decided to 

calculate the maximum coverage of all available algorithms: it could be a direct report if 

only one algorithm was available, maximum coverage of two if two were available and 

maximum coverage of three if three were available. Then we tested whether the shared 

region of the maximum coverage was over 30% of the total coverage. We chose this 

approach because: 1. this issue is overcomplicated and needs to be simplified, and 2. 

the boundary of CNV is hard to define, thus any report may be treated as evidence of a 

CNV.  

 

We modeled the positive predicted rate for duplication and deletion separately. We let T 

denote true state and Oi denote observed state, at time i (i=1,2). T and Oi take the value 

1 for “presence” and 0 for “absence” of CNVs (duplications or deletions). The sensitivity 

p and specificity q are   

Pr( 1| 1)ip O T    
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Pr( 0 | 0)iq O T    

Each CNV calling program typically reports a value for calling confidence. Let Z denote a 

set of CNV characteristics, including percentile distribution of confidence scores from 

each program and the number of programs that report a CNV at a particular CNV 

segment. Let k denote the true base rate at this region. Therefore, we have  

Pr( 1)k T   

Then the probability of observing a CNV (duplication or deletion) at evaluation i is given 

by 

(1)         Pr( 1| ) (1 )(1 )iP O Z pk q k         

Similarly, the probability of observing a case at the second time, conditional on 

observing a case at the first time at condition Z is 

(2)  2 1 1 1Pr( 1| 1, ) Pr( 1| 1, ) (1 )(1 Pr( 1| 1, ))O O Z p T O Z q T O Z                

 

In order to estimate theoretical sensitivity for this model, we used the following 

methodology. At time 2, the probability of confirming a true positive which is discovered 

at time 1 (i.e. identifying a CNV in the second replicate, given that it is true and it was 

seen in the first replicate) is the theoretical sensitivity of this model. Let Zmax denote the 

theoretical condition for which all three CNV estimation programs asymptotically reach 

the maximum value for prediction of a CNV. Then, we make the assumption that if a 

CNV is identified (O1=1) with the theoretical maximum values of the three programs 

(Zmax), then the CNV is a true positive (T=1): 

1 maxPr( 1| 1, ) 1T O Z    

This is a theoretical situation. Because we used percentile distributions of confidence 

scores, Zmax should be 100 for each confidence score, and 3 for the consistence rate, 

which are the theoretical maximum values that Zmax can reach.  Combining 

1 maxPr( 1| 1, ) 1T O Z   with Function (2), we have: 

2 1 maxPr( 1| 1, )p O O Z    

where p is the theoretical sensitivity of our mathematical model. The value of 

2 1Pr( 1| 1, )O O Z  can be modeled by a logistic regression model because O2, O1, and 

Z are all observed values: 

2 1Pr( 1| 1, ) 1/ [1 exp( )]O O Z Z        
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The percentile of confidence scores from CNVpartition, PennCNV and QuantiSNP, as 

well as the consistency rate, were all significant for duplications or deletions. Based on 

the logistic regression and the formula 2 1 maxPr( 1| 1, )p O O Z    , we estimated that the 

theoretical sensitivity is 0.91 for duplications, and 0 .97 for deletions. This is the 

theoretical sensitivity for the mathematical model, and should be distinguished from the 

sensitivity p’ for each subcategory. We also wanted to point out that these regions are 

restricted to 851 potential regions for duplications and 2,348 potential regions for 

deletions. 

 

We have duplicate samples. The probability of observing a CNV (duplication or deletion) 

at both times is given by 

(3)             2 2
2 1 1 2Pr( 1, 1 | , ) (1 ) (1 )P O O Z Z p k q k           

Now, q can be solved by combining function (1) and (3), 

p P P pP
q

p P
  



  



 

From this formula, we also can estimate that the theoretical specificity, which is 0.986 for 

duplications and 0.989 for deletions.  

 

For each CNV, by solving function (2), we can obtain the positive predicted rate R+, 

which is the probability of being a CNV, conditioned on being positive at time 1.  

1 2 1Pr( 1| 1, ) [Pr( 1| 1, ) 1] / ( 1)R T O Z O O Z q p q            

R+ was calculated for all CNVs, and we took the mean value of R+ of CNVs within each 

category. This is the positive predicted rate for each subcategory reported in Tables 2-4 

&S1. And this value is later used to calculate the sensitivity for each subcategory as 

described below. We assume p’, q’ are the sensitivity and specificity within each 

subcategory, respectively, and k is the true base rate. We have   

(4)    ' P
p R

k


  

Functions (1), (3) and (4) together only have 3 unknown variables: k, p’ and q.  P+ and 

P++ can be obtained from the data directly. By solving functions (1), (3) and (4), we can 

obtain the following formula for p’ . 

2' ' 0ap bp c    

Among them,  
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a P R  ,  2 2 2( )b P P R P P R         ,   c P R P    

Finally,  

2 4'
2

b b ac
p

a

  
  

The negative root is ignored because it is out of boundary.  

Given that p’ can be calculated from the function above, and both P+ and R+ are 

available, we can also estimate the base rate k by solving function (4). Therefore, we 

have  

'
P

k R
p


  

When all CNV callings are considered, the base rate k  is 0.016 for deletions and 0.012 

for duplications. 

 

 

Model validation 

In calculating the positive predicted rate R+, we assumed that 1 maxPr( 1| 1, ) 1T O Z   , 

i.e., a theoretical CNV is true if three programs simultaneously report the highest 

confidence scores. This assumption is only used to estimate the theoretical sensitivity of 

our mathematical model. Zmax is the characteristic from a theoretical CNV that has the 

highest confidence score and is confirmed by all three programs. Because we used 

percentile distributions, the vector of Zmax includes 100 for each confidence score and 3 

for the consistence rate. For a theoretical CNV like this, our mathematical model can 

only capture part of it; therefore probability is the theoretical sensitivity of our 

mathematical model. This theoretical CNV does not exist in reality. We can only test 

some CNVs with weaker characteristics. Our rationale is that if a CNV with slightly 

weaker characteristics can meet the requirement, a theoretical CNV with perfect 

characteristics can meet the requirement as well. We tested CNVs with weaker 

characteristics on Chr 14 by qPCR. Among them, 48 subjects have CNVs with R+ more 

than 0.91, with the average as high as 0.98. The qPCR experiment confirmed that all 48 

subjects were reported as having the CNVs and 0 were false positive. 
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