Supplemental Figure 1

Sexing of Atlantic halibut juveniles using P450 aromatase cyp19a as a marker. cypl9a and
exogenous reference gene, luciferase (Luc) expression is shown. Individuals without bands or
weak bands were considered as males while those with strong bands were considered as

females.
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Supplemental Figure 2

Atlantic halibut SOLID reads from libraries of A) ovary B) testis C) female brain, and D) male brain
were mapped to rRNA, mtRNA, tRNAs, miRNAs, other non-coding RNAs and Atlantic halibut ESTs.

The number of reads and their percentage mapped to each database are shown.
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Supplemental Figure 3

Heatmap of miRNA expression in Atlantic halibut ovary, testis, female brain, and male brain.
Blue and purple squares represent the expression score of normalized reads in a given tissue.
Gray-scale squares represent the difference score, which is the ratios of relative normalized
reads of ovary (Ro), testis (Rt), female brain (Rfb) or male brain (Rmb) divided by the ratio of
their sum minus the ratio of the relative normalized reads of the opposite sex or the other

tissue; i.e.,

Ovar y \Testis = (Ro— RT) + (Ro + Rt + Rfb + Rmb)
Femalebrain \ Malebrain = (Rfm — Rmb) + (Ro + Rt + Rfb + Rmb)
Gonads \ Brains = [(Ro + RT) — (Rfb + Rmb) ]+ (Ro + Rt + Rfb + Rmb)
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Supplemental Figure 4

Amplification curve of let-7a, miR-19b, miR-24, and miR-202-3p (A), miR-143 (B), miR-145
(©), and endogenous control U6 (D) in skin, muscle, gut and kidney of Atlantic halibut
juveniles using RT-gPCR. For the detail of the RT-PCR conditions see Materials and
Methods. For visualization purpose both biological and technical replicates were removed.

Fig 5A shows late amplification of let-7a in gut, and miR-24 in kidney and skin.
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