METAINFO

GENE-SET

REACTOME PRESYNAPTIC NICOTINIC ACETYLCHOLINE RECEPTORS

REACTOME_ACETYLCHOLINE_BINDING_AND_DOWNSTREAM_EVENTS

REACTOME HIGHLY CALCIUM PERMEABLE POSTSYNAPTIC NICOTINIC ACETYLCHOLINE RECEPTORS

REACTOME TRANSMISSION ACROSS CHEMICAL SYNAPSES

HOOI ST7 TARGETS UP

REACTOME NEUROTRANSMITTER RECEPTOR BINDING AND DOWNSTREAM TRANSMISSION IN

THE POSTSYNAPTIC CELL

NICOTINIC ACETYLCHOLINE ACTIVATED CATION SELECTIVE CHANNEL ACTIVITY

NICOTINIC_ACETYLCHOLINE_GATED_RECEPTOR_CHANNEL_COMPLEX

REACTOME_SIGNALING_BY_FGFR1_FUSION_MUTANTS

REACTOME_REGULATION_OF_SIGNALING_BY_CBL

GSE12366_GC_BCELL_VS_PLASMA_CELL_UP

NIKOLSKY_BREAST_CANCER_15Q26_AMPLICON

AMINE BINDING

GSE17721_LPS_VS_CPG_2H_BMDM_UP

V\$FOXO3 01

SENESE HDAC2 TARGETS UP

KEGG OLFACTORY TRANSDUCTION

SHETH LIVER CANCER VS TXNIP LOSS PAM1

VANOEVELEN MYOGENESIS SIN3A TARGETS

KEGG FOCAL ADHESION

ACETYLCHOLINE BINDING

REACTOME_NEURONAL_SYSTEM

BIOCARTA_GLEEVEC_PATHWAY

CHIARADONNA_NEOPLASTIC_TRANSFORMATION_KRAS_CDC25_DN

FARMER BREAST CANCER CLUSTER 8

KEGG SYSTEMIC LUPUS ERYTHEMATOSUS

GSE2706 LPS VS R848 AND LPS 2H STIM DC DN

KATSANOU ELAVL1 TARGETS UP

YAO TEMPORAL RESPONSE TO PROGESTERONE CLUSTER 9

REACTOME APC C CDH1 MEDIATED DEGRADATION OF CDC20 AND OTHER APC C CDH1

TARGETED PROTEINS IN LATE MITOSIS EARLY G1

REACTOME DESTABILIZATION OF MRNA BY AUF1 HNRNP DO

KANG AR TARGETS UP

NIKOLSKY_BREAST_CANCER_16Q24_AMPLICON

REACTOME SIGNALING BY HIPPO

GSE36476 CTRL VS TSST ACT 16H MEMORY CD4 TCELL OLD DN

POTASSIUM_CHANNEL_REGULATOR_ACTIVITY
GCCNNNWTAAR_UNKNOWN
ZWANG_EGF_PERSISTENTLY_UP
REACTOME_CDT1_ASSOCIATION_WITH_THE_CDC6_ORC_ORIGIN_COMPLEX
V\$EGR1_01
MODY_HIPPOCAMPUS_POSTNATAL
GSE20366_CD103_POS_VS_CD103_KLRG1_DP_TREG_DN

	Discovery									
	COPDGene				GenKOLS			Combined		
N_all	N	Ncorr	Р	Pcorr	N	Ncorr	Р	Pcorr	P	Pcorr
12	12	9	3.2E-04	0.11	12	9	0.0066	0.12	2.8E-05	0.10
16	14	11	5.4E-04	0.11	14	11	0.0056	0.094	4.3E-05	0.088
13	11	8	0.0024	0.34	11	8	0.0055	0.12	2.1E-04	0.35
186	172	169	0.0029	0.015	172	169	0.0060	0.016	2.8E-04	0.0033
94	80	80	0.0050	0.0050	80	80	0.031	0.031	0.0016	0.0016
137	126	123	0.0053	0.032	126	123	0.016	0.043	0.0010	0.014
11	11	9	0.0083	0.268	11	9	0.016	0.11	0.0017	0.26
11	11	9	0.0083	0.268	11	9	0.016	0.11	0.0017	0.26
19	18	18	0.011	0.011	18	18	0.006	0.0059	0.0013	0.0013
18	18	18	0.012	0.012	18	18	0.035	0.035	0.0043	0.0043
200	177	177	0.013	0.013	177	177	0.0054	0.0054	0.0014	0.0014
22	21	21	0.014	0.014	21	21	0.0085	0.0085	0.0020	0.0020
23	21	18	0.015	0.340	21	18	0.027	0.19	0.0046	0.43
200	188	188	0.016	0.016	187	187	0.030	0.030	0.0052	0.0052
245	226	226	0.017	0.017	226	226	0.030	0.030	0.0054	0.0054
114	110	110	0.017	0.017	110	110	0.0040	0.0040	0.0016	0.0016
389	356	356	0.018	0.018	357	357	0.043	0.043	0.0078	0.0078
229	213	213	0.019	0.019	213	213	0.012	0.012	0.0035	0.0035
220	211	211	0.020	0.020	211	211	0.0075	0.0075	0.0028	0.0028
201	191	191	0.025	0.025	191	191	0.013	0.013	0.0052	0.0052
17	17	14	0.026	0.52	17	14	0.0086	0.104	0.0042	0.56
279	262	259	0.027	0.074	262	259	0.045	0.082	0.012	0.052
23	23	23	0.030	0.030	23	23	0.035	0.035	0.011	0.011
51	47	47	0.030	0.030	47	47	0.0085	0.0085	0.0050	0.0050
7	7	7	0.033	0.033	7	7	0.023	0.023	0.010	0.0099
140	121	121	0.034	0.034	122	122	0.050	0.050	0.016	0.016
200	137	136	0.034	0.058	137	136	0.0022	0.0032	0.003	0.0069
169	160	160	0.035	0.035	160	160	0.026	0.026	0.011	0.011
76	71	71	0.037	0.037	71	71	0.033	0.033	0.014	0.014
72	62	62	0.037	0.037	62	62	0.041	0.041	0.016	0.016
53	49	49	0.038	0.038	49	49	0.041	0.041	0.017	0.017
17	15	15	0.039	0.039	15	15	0.0030	0.0030	0.0039	0.0039
53	50	50	0.040	0.040	50	50	0.0092	0.0092	0.0073	0.0073
22	19	19	0.041	0.041	19	19	0.0071	0.0071	0.0065	0.0065
200	192	192	0.041	0.041	192	192	0.029	0.029	0.014	0.014

14	13	13	0.042	0.042	13	13	0.0025	0.0025	0.0040	0.0040	
149	134	134	0.042	0.042	134	134	0.028	0.028	0.015	0.015	
32	29	29	0.045	0.045	29	29	0.0071	0.0071	0.0075	0.0075	
56	53	53	0.046	0.046	53	53	0.047	0.047	0.022	0.022	
269	251	251	0.047	0.047	251	251	0.0034	0.0034	0.0054	0.0053	
63	58	58	0.049	0.049	58	58	0.046	0.046	0.023	0.023	
200	187	187	0.049	0.048	187	187	0.045	0.045	0.023	0.022	

Replication	
ECLIDEE	

	ECLIPSE								
N	Ncorr	Р	Pcorr						
12	9	0.87	0.96						
14	11	0.84	0.94						
11	8	0.75	0.90						
172	169	0.46	0.50						
80	80	0.79	0.79						
126	122	0.69	0.72						
126	123	0.68	0.73						
11	9	0.92	0.96						
11	9	0.92	0.96						
18	18	0.69	0.69						
18	18	0.15	0.15						
177	177	0.94	0.94						
21	21	0.076	0.076						
21	18	0.44	0.57						
188	188	0.52	0.52						
226	226	0.032	0.031						
110	110	0.26	0.26						
359	359	0.83	0.82						
213	213	0.43	0.43						
212	212	0.54	0.54						
191	191	0.15	0.15						
17	14	0.62	0.76						
262	259	0.93	0.94						
23	23	0.31	0.31						
47	47	0.59	0.59						
7	7	0.22	0.22						
122	122	0.70	0.69						
137	136	0.39	0.39						
160	160	0.69	0.69						
71	71	0.22	0.22						
62	62	0.43	0.43						
49	49	0.39	0.39						
15	15	0.33	0.33						
50	50	0.0062	0.0062						
19	19	0.95	0.95						
192	192	0.30	0.30						
152	152	5.50	5.50						

13	13	0.92	0.92
134	134	0.17	0.16
29	29	0.88	0.88
53	53	0.32	0.32
251	251	0.022	0.021
58	58	0.29	0.28
187	187	0.90	0.90

		NACTAINICO				l	Discovery
		METAINFO			COPDGene		
GENE	CHR	START	STOP	N	Min P	Gene P	N
CHRNA1	2	175612320	175629200	37	0.17	0.50	36
CHRNA2	8	27317279	27337400	71	0.042	0.84	71
CHRNA3	15	78885394	78913637	54	1.3E-08	1.7E-05	54
CHRNA4	20	61975420	62009753	36	0.048	0.80	35
CHRNA5	15	78857862	78887611	44	4.7E-08	0.0011	44
CHRNB2	1	154540257	154552502	22	0.15	0.41	22
CHRNB3	8	42552519	42592550	37	0.012	0.18	38
CHRNB4	15	78916461	79012628	81	1.3E-08	1.0E-06	82
CHRND	2	233390703	233401377	25	0.018	0.16	25
CHRNE	17	4801069	4806369	19	0.012	0.067	19
CHRNG	2	233404437	233412546	29	0.013	0.063	29
CHRNA6	8	42607763	42651535	28	0.022	0.085	30

y			Replication			
GenKO	LS	Combined	ECLIPSE			
Min P	Gene P	Gene P	N	Min P	Gene P	
0.10	0.50	0.99	39	0.075	0.16	
3.4E-04	0.33	0.51	75	0.010	0.86	
3.8E-04	0.0027	6.5E-07	60	0.059	0.17	
0.073	0.74	0.29	36	0.068	0.70	
2.6E-04	0.0093	1.3E-04	52	0.059	0.25	
0.078	0.23	0.58	23	0.093	0.79	
0.052	0.079	0.14	39	0.17	0.57	
7.1E-04	0.0080	1.0E-07	86	0.16	0.52	
0.078	0.21	0.21	27	0.12	0.96	
0.030	0.50	0.19	20	0.17	0.89	
0.078	0.33	0.12	33	0.11	0.43	
0.038	0.15	0.089	32	0.077	1	