Appendix
Computing probability of observed data

For each individual m, we can write the observed data as the pair [image: image1.png]( AV ptim)
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. We have:
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We can simplify each conditional probability in the above equation as follows:

i. If we specify non-differential misclassification, we have:
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,

since the observed base pair read counts are dependent only upon the underlying true sequence read counts. Using the Binomial Distribution, we can write:
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In this expression, [image: image6.png](Ini(mI;(:nr)Ll(m)l)



 is the Binomial Coefficient defined by:
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 . 

If we specify differential misclassification, we have:
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,

that is, the observed sequence reads are dependent upon the underlying true sequence read counts and the phenotype. Using the Binomial Distribution, we can write:
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Under differential misclassification, it is possible that [image: image10.png]£o * &1



; that is, the error rate in controls may differ from the error rates in cases.
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, since the true sequence read counts are only dependent upon the true genotype of the individual at the particular SNP position. Using the Binomial Distribution, it is straightforward to show:
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where we use the convention [image: image13.png]


.

ii. [image: image14.png]Pr(xlt(m)|yit(m)) =1



, by definition.

iii. [image: image15.png]Pr(yit(m)) =gt



, by definition.

It follows that:
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where [image: image17.png]


 under non-differential misclassification.

Error Estimation by approximation and maximum likelihood

Here we derive estimates of the sequence-read error rates [image: image18.png]&,i=0,1



 for controls and cases. To make the formulas as general as possible, we will consider differential misclassification; that is, [image: image19.png]£o * &1



. As noted in Results section (Subsection: Likelihood ratio test using EM algorithm -Alternative hypothesis (H1)), the probability of the observed data is:
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If we consider HWE and that the 1 allele is rare, then:
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Since p and δ will be very small, we have the estimate that [image: image23.png]Pio ~ Lpi; % 0
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. Thus, for a given phenotype, 
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According to likelihood theory [39], we have (by definition) for a single individual: [image: image26.png]L(s,|data) 7L(£ |Av(m) t(m)) Kx Pr(AV(m) t(m)|£l)
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, where K is an arbitrary constant. Thus,  
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From this point forward, we replace the term "data" by m, indicating that the data is for a specific individual.

The full likelihood of the data is:
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Also, the log-likelihood of the data is:
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The right-hand side of this equation can be rewritten as:
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where:
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 To find the maximum likelihood estimate of [image: image32.png]
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, which equals:
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Maxima will occur at either the boundaries or where the derivative is 0. The boundary values are 0 and 1; this means there are either no errors or only errors. These scenarios would only occur if [image: image35.png]=0
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 for every control. Such situations will not occur with large sample sizes where the true error rates are low but not non-zero. 


If the derivative is 0, then [image: image37.png]Mo _ V1o _
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 so that:
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or,
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An identical derivation using [image: image41.png]dln (L)
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 shows that:
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Intuitively, these estimate makes sense; if the 1 allele is so rare that it does not occur in the sample, any non-zero counts must be errors. Furthermore, the denominators here are the total number of sequence reads over all individuals (cases or controls).
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 locus genotype based on [image: image44.png]kth



 locus genotype and correlation coefficient
In this section, we present a derivation of the [image: image45.png](k + 1)



 locus genotype, [image: image46.png]lsk=M-1



, where M is the number of loci in the study. In this work, M = 3. Also, rather than use the coding “1” and “2” for alleles, we use the genotype coding “0”, “1”, and “2” to indicate the number of rare alleles that an individual has in his/her genotype.


For [image: image47.png]


, all genotypes are determined by the HWE formulas listed in the previous section. Specifically, we use the probabilities: 
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, to determine the first locus genotypes. For example, if the individual is a case, and the uniform random number generator produces a value between [image: image50.png]Pio



 and [image: image51.png]pio + i,



, then the case is assigned a “1” genotype (heterozygote).

Let us label the alleles at the [image: image52.png]


 locus as “A” and “a” and the alleles at the [image: image53.png](k + 1)



 locus as “B” and “b”, where the A and B alleles are the rare variants at each locus. Consider the following notation, that is used in the remainder of this section:
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 = A allele frequency.
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 = a allele frequency.
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 = B allele frequency.
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 = b allele frequency.

Disequilibrium
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 is a real constant, here labeled the "correlation coefficient". We define [image: image60.png]


 this way because Pritchard and Przeworski [40] documented that [image: image61.png]


 serves as a good approximation of sample size increase necessary when linkage disequilibrium between two loci is less than maximal.
Haplotype frequencies
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In what follows, we specify that the haplotype frequency pairs satisfy the conditions of HWE.

We are interested in computing: 
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,
where s, t can take on the values 0, 1, or 2. For simplicity, from this point forth we will abbreviate the conditional probability by [image: image64.png]Pr (s|t)



.

This calculation is straightforward using the definition of conditional probability. We perform the calculations for (s =0, t = 0) in more detail, and provide the formulas for the other values of t.
We have:
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.

Since s = 0 means the genotype bb, and t = 0 means the genotype aa, the two-locus genotype [image: image66.png](s =0,t=0)



 can only be formed by the pair of haplotypes [image: image67.png](hav, hav)



. Therefore, we have:
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Similarly, 
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and
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The remaining 6 formulas are:
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