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Supplement 1. Statistical details of variable selection and IPD network meta-

regression 
 

1 Individual-patients network meta-analysis model 

We used a one-stage, repeated-measurements, individual participant data network meta-analysis (IPD-

NMA) model. The model jointly synthesizes information on multiple time points per patient, while 

stochastically imputing missing outcomes at the same step.  

First, we describe the imputation part of the model. Assume patient � in study � received treatment �����	
. 

For each patient we measure the outcome at different time points after study’s initiation. Let us denote with � 

the timepoint of an observation (where in our analysis � = 1,2,4,5,6 for six different time points, weeks 2, 4, 6, 

8, 10 and 12), and let us group a patient’s observations in the following vector: ����� =
��	
�, �	
�, �	
�, �	
�, �	
�, �	
� . We assume that the (repeated) observations from each patient follow a 

multivariate normal distribution, i.e. �����~"($��, %) , where $�� = ('	
�, '	
�, '	
�, '	
�, '	
�, '	
�) . This 

means that all missing observations are imputed assuming that the missing observations are missing at random, 

i.e. that we can predict the unobserved outcomes for people dropping out based solely on observed data they 

have provided, without any extra assumption. The variance-covariance matrix % is assumed to be common for 

all studies, and it incorporates the correlation between the patient-level observations at different time points. 

This way missing outcome observations are imputed using the rest of the observations for each patient, as well 

as the correlations between the multiple measurements, as observed in other patients. For the inverse of % we 

employ a Wishart prior distribution ((), *) , where * = 6  and the scale matrix was chosen to have an 

“autoregressive” form, because observations closer in time are expected to be more highly correlated: 

+ =
,
--.

1 . . . . .0.5� 1 . . . .0.5� 0.5� 1 . . .0.5� 0.5� 0.5� 1 . .0.5� 0.5� 0.5� 0.5� 1 .0.5� 0.5� 0.5� 0.5� 0.5� 10
112 

Second, we describe our IPD NMA model. The model is set in a Bayesian background. First we choose a 

reference treatment for the network, denoted by 3456. For '	
7 we assume that: 

'	
7 = 8 9
7     ,    �: �����	
 = 34569
7 + <=45>=?,7       ,    �: �����	
 ≠ 3456 

In this equation 9
7 corresponds to the mean outcome for patients in study � who receive the reference treatment, 

at timepoint �. Note that we employ the fixed effects assumption, since we did not have enough studies to 

estimate heterogeneity. In order to model the time dependence of the mean outcome, we assume that 9
7 =
9
� + AB(� − 1). This is motivated by Figure S2, where there is a clear time trend in the patients’ outcome over 

time. We assume that 9
�~"(DE, �E�). <=45>=?,7  corresponds to the estimated relative effects of �����	 vs. the 

reference at time point �. The consistency equations required for a NMA are automatically incorporated in the 
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model, for each time point. Note that the imputation models for the missing outcomes, as well as the estimation 

model are fit simultaneously. 

The above description of the model pertains to the continuous outcome, for which we had multiple 

observations per patient, at different time points. For the dichotomous outcome we only analysed the outcome 

at 12 weeks. For these outcomes the model was changed as follows: 

FGH��(I	
) = 8 9
   ,    �: �����	 = 34569
 + <=45>=?       ,    �: �����	 ≠ 3456 

where I	
 denotes the probability of having an event for the outcome under examination.  

2 Individual-patients network meta-regression model 

We extended the IPD NMA model described above to also include the covariates identified in the variable 

selection procedure. The model jointly synthesized information on multiple time points per patient, while 

stochastically imputing missing covariates and missing outcomes at the same step.  

First, we describe the imputation part of the model. For each patient covariate we used a study-specific 

distribution for the imputation. This way we stochastically impute the unreported patient covariates, taking into 

account uncertainty about missing outcomes. This assumes that covariates are missing at random. We use 

univariate distributions (separate distribution for each covariate), with study-specific parameters. The 

distributions we used depended on the nature of the covariate (continuous vs. binary). E.g. for patient � in study 

� we assumed for the continuous covariate IDS anxiety factor JKL	
~"('. JKL
, �. JKL
). For the binary 

covariate Neglect we used a Bernoulli distribution, etc. For the missing outcome values we used the same 

strategy as described in the IPD NMA model, i.e. �����~"($��, %) , where $�� =
�'	
�, '	
�, '	
�, '	
�, '	
�, '	
� . 

Second, we describe our primary meta-analysis model. The model is set in a Bayesian background. First we 

choose a reference treatment for the network, denoted by 3456. Assume patient � in study � received treatment 

�����	
. For this patient we have vectors MN� and O$�. For '	
7 we assume that: 

'	
7 = 8 9
7 + P MN�      ,    �: �����	
 = 34569
7 + P MN� + QRS�TR�O$� + <=45>=?,7       ,    �: �����	
 ≠ 3456 

In this equation 9
7 corresponds to the mean outcome for patients in study � who receive the reference 

treatment, at timepoint �, with the PFs equal to their mean values (for all PFs). The parameters of the model 

can be interpreted as follows: 

P: vector of regression coefficients for PFs. This vector quantifies the prognostic value of the covariates 

QRS�TR� : vector of regression coefficients for EMs. This vector quantifies the effect modification 

(treatment-covariate interaction), for each of the covariates, for each comparison vs. the reference 

<=45>=?,7 : the estimated relative effects of �����	 vs. the reference at time point �, for mean values of the 

EMs. 

The consistency equations required for a NMA are automatically incorporated in the model, both at the 
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<=45>=?,7  as well as the QRS�TR�, for each time point. Note that the imputation models for the missing covariates 

and missing outcomes, as well as the estimation model are fit simultaneously. 

The above description of the model pertains to the continuous outcome, for which we had multiple 

observations per patient, at different time points. For the dichotomous outcome we only analysed the outcome 

at 12 weeks. For these outcomes the model was changed as follows: 

FGH��(I	
) = 8 9
 + P MN�      ,    �: �����	 = 34569
 + P MN� + QRS�TR�O$� + <=45>=?       ,    �: �����	 ≠ 3456 

where I	
 denotes the probability of having an event for the outcome under examination. Also note that: 

• For the dichotomous outcome of dropout we focused at 12 weeks, and thus we excluded Schramm et 

al. (2015) because its duration was 8 weeks. There were no missing values for this outcome. 

3 Estimating inconsistency 

We used the design-by-treatment inconsistency model to estimate inconsistency in our network (1,2). This 

model “bends” the consistency equations by adding a number of inconsistency factors (IFs) to the model. In our 

network two inconsistency factors were in principle needed per time point. The model for the primary outcome 

can be written as 

'	
7 = 8 9
7 + P MN�      ,    �: �����	
 = 34569
7 + P MN� + QRS�TR�O$� + <=45>=?,7 + JU
7       ,    �: �����	
 ≠ 3456 

where JU�7 = 0 for all �, because study 1 (Keller) is a three-armed study (consistent by definition). The third 

study (Lundbeck) only provides observations at � = 4  (8 weeks), so that  JU�7 = 0  for � ≠ 4 . An IF 

significantly different than 0 would point to significant inconsistency. A similar model can be written for the 

dichotomous outcome. 

For the first primary outcome (efficacy) we focused at 8 weeks (where all studies provided information), 

and thus only two IFs were relevant, i.e. JU�� and JU��. For the second primary outcome (dropout) only one IF 

was needed, as all analyses were performed at 12 weeks. 

4 Selection of variables to be included in the meta-regression model 

Here we describe the strategy we used to choose which patient covariates (variables) to include in our IPD 

network meta-regression model. We began by rescaling all continuous candidate covariates by subtracting the 

mean and dividing with the standard deviation of each covariate. This was done to facilitate all analyses 

described below. For example, we rescaled observations regarding the continuous variable IDS (IDS anxiety 

factor at baseline) by subtracting 12 and dividing by 5. These numbers correspond to the mean and standard 

deviation across all studies. Next, we performed multiple imputations on the missing data (both outcome and 

variable data) using the ice command in Stata. We generated 10 multiply imputed datasets. As a first 

exploratory step we performed a stepwise variable selection on each of the imputed datasets, by (linearly) 

regressing the outcome at week 12 vs. all the covariates. We combined estimates of the imputed datasets with 

the Rubin’s rules, using the mim command in Stata. We took this first step in order to do a first screening, 



5 

 

aiming to narrow down the number of covariates. 

After having identified the most important covariates in the first step, we proceeded to the second step. In 

this step, in order to decide which of these covariates or combinations thereof to include in the regression model 

as PF or EM, we fitted a penalized regression model using the glmnet package in R. We explored first and 

second order combinations of the covariates, and their interactions with the treatment. We fitted the model 

separately in each multiply imputed dataset, and we kept the terms that were chosen by the penalized regression 

model in all multiply imputed datasets. 

Penalized regression models offer a means for identifying the most important covariates, dropping the rest 

out of the model. In order to decide which terms to include in the model, we performed a 10-fold cross-validation 

(CV). The dataset was randomly partitioned into 10 equal sized subsamples. A single subsample was retained 

as the CV data for testing the model, and the remaining 9 subsamples were used as training data. The CV process 

was repeated 10 times, with each of the 10 subsamples used exactly once as the CV data. The 10 results from 

the folds were then combined to produce a single model. 

5 Fitting the models 

We fitted all IPD NMA and meta-regression models in OpenBUGS, using 2 independent chains per model. For 

all model parameters we used vague distributions. For the coefficients of PFs and EMs we used "(0,10�). For 

the imputation of dichotomous covariates we used a uniform V(0,1) for the study-specific probabilities (i.e. 

used for imputing the binary covariates such as Prior medication and Neglect). For the rest of the 

continuous covariates as well as the IFs we used "(0,10�) for the means and V(0,4) for the standard deviations. 

We performed 50,000 iterations, and we discarded the first 10,000 samples. Convergence was confirmed using 

the Brooks-Gelman-Rubin criterion (3). After fitting the model to the data and estimating the model parameters 

we used the model to make predictions about patients, given the values of the PFs and EMs. This is used in the 

interactive webpage and also the excel file.  
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Supplement 2. Data description 

 

Figure S1. PRISMA flowchart for selection of studies 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

667 references identified by 

electronic search: 

Cochrane CENTRAL: 43 

PubMed: 57 

Scopus: 126 

PsycInfo: 445 

6 studies identified as RCTs 

examining CBASP in persistent 

depressive disorder 

Excluded based on title and abstract or 

examination of full text: 661 

Inquiry after principal investigators added 

one completed and submitted study: 1 

7 studies identified as RCTs 

examining CBASP in persistent 

depressive disorder 

3 RCTs comparing at least two of 

CBASP, pharmacotherapy or their 

combination 

Excluded: 4 

- 3 studies compared CBASP against 

another psychotherapy 

- 1 study compared 

CBASP+antidepressant against 

another 
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Table S1: Data availability for depression severity by week 

 study 

Severity at week Keller Kocsis Schramm 

0 � � � 

2 � � - 

4 � � - 

6 � � - 

8 � � � 

10 � � - 

12 � � - 

 

 

Figure S2. Pooled, aggregated data from all the three studies, for 24-item HAM-D at different time 

points 
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Supplement 3. Parameter estimates for prognostic factors and effect modifiers 

 

Table S2. Selected prognostic factors (PFs) and effect modifiers (EFs) for change in depression severity, 

dropout for any reason and deterioration 

 

Primary 

outcomes 
Prognostic factors Effect modifiers 

  CBASP vs COMB 
MEDS vs 

COMB 

Depression 

severity 

1. IDS anxiety factor 

2. HAM-D 

3. Prior medication 

4. (HAM-D)2 

5. Neglect × HAM-D 

6. HAM-D × Prior medication 

7. IDS anxiety factor × Prior medication 

1. (HAM-D)2 

2. HAM-D × IDS 

anxiety factor 

1. HAM-D 

2. HAM-D × 

Prior 

medication 

Dropout for 

any reason 

1. HAM-D 

2. Age 

3. Prior medication 

4. (HAM-D)2 

5. (Age)2 

6. Chronic MDD × HAM-D 

7. Dysthymia × HAM-D 

8. Age × Marital status single 

9. Age × Chronic MDD 

10. Marital status married ×Prior medication 

1. (Age)2 

2. Age × Chronic 

MDD 

1. (HAM-D)2 

2. Age × HAM-

D 

Secondary 

outcome    

Deterioration 1. HAM-D 

2. IDS anxiety factor 

3. (Social function) 2 

4. (HAM-D) 2 

5. (IDS anxiety factor) 2 

6. IDS anxiety factor × HAM-D 

7. Marital status married * HAM-D 

1. (HAM-D) 2 1. HAM-D 

 

IDS anxiety factor: Anxiety/arousal factor score of Inventory of Depressive Symptomatology Self-Report at 

baseline (continuous) 

HAM-D: 24-item Hamilton Rating Scale for Depression score at baseline (continuous) 

Prior medication: Prior treatments with antidepressants (dichotomous) 

Neglect: Emotional or physical neglect (dichotomous) 

Chronic MDD: Chronic major depression (dichotomous) 

Dysthymia: Dysthymic disorder (dichotomous) 

Marital status married: married/de facto/in a relationship (dichotomous) 

 

CBASP: Cognitive-Behavioral Analysis System of Psychotherapy 

MEDS: Antidepressants 

COMB: Cognitive-Behavioral Analysis System of Psychotherapy + Antidepressants 
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Table S3. Parameter estimates for the IPD network meta-regression model for depression severity 

 Description of the parameter  mean 
Lower 

95% CrI 

Upper 

95% CrI 

Regression coefficients for 

time 
β0 -0.23 -0.25 -0.20 

Regression coefficients for 

prognostic factors  

β1 

IDS anxiety factor 
0.04 -0.07 0.15 

β2 

HAM-D 
0.37 0.19 0.55 

β3 

Prior medication 
0.06 -0.11 0.21 

β4 

(HAM-D)2 
-0.03 -0.07 0.02 

β5 

Neglect*HAM-D 
0.05 -0.09 0.19 

β6 

Prior medication*HAM-D 
0.11 -0.06 0.30 

β7 

IDS anxiety factor*Prior 

medication 

0.06 -0.05 0.19 

Regression coefficients for 

effect modification  

CBASP vs combination 

 

(HAM-D)2 
-0.05 -0.14 0.04 

IDS anxiety factor* HAM-D 0.16 0.04 0.28 

Regression coefficients for 

effect modification  

medication vs combination 

HAM-D 0.04 -0.16 0.23 

Prior medication * HAM-D 0.08 -0.13 0.27 

Where: 

• Neglect is the emotional or physical neglect (binary variable) 

• IDS anxiety factor is IDS anxiety/arousal factor at week 0 (continuous variable) 

• HAM-D is 24-item HAM-D score at week 0 (continuous variable) 

• Prior medication represents history of prior medication (binary variable) 

 

All covariates have been standardized before the analyses, so that it is not straightforward to interpret the values 

of these covariates. 
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Table S4. Parameter estimates for the IPD network meta-regression model for dropouts for any reason 

 

 Description of the parameter  mean 
Lower 

95% CrI 

Upper 

95% CrI 

Regression coefficients for 

prognostic factors  

β1 

HAM-D 
0.11 -0.27 0.50 

β2 

Age 
-0.16 -0.41 0.08 

β3 

Prior medication 
-0.07 -0.44 0.30 

β4 

(HAM-D)2 
-0.09 -0.28 0.08 

β5 

(Age)2 
0.20 0.04 0.36 

β6 

Chronic MDD*HAM-D 
0.42 0.01 0.84 

β7 

Dysthymia*HAM-D 
0.43 0.03 0.84 

β8 

Age*Marital status married 
-0.16 -0.54 0.21 

β9 

Age*diagnos1 
-0.22 0.59 0.15 

β10 

Marital status single*Prior 

medication 

-0.38 -0.78 0.03 

Regression coefficients for 

effect modification  

CBASP vs combination 

 

(Age)2 
-0.39 -0.75 -0.07 

Age * Chronic MDD -0.87 -1.64 -0.17 

Regression coefficients for 

effect modification  

medication vs combination 

(HAM-D)2 -0.13 -0.38 0.12 

Age * HAM-D 0.09 -0.17 0.34 

Where 

• Chronic MDD is a binary variable which denotes whether the primary diagnosis depression type is 

MDD (chronic).  

• Dysthymia is a binary variable which denotes whether the primary diagnosis depression type is 

Dysthymic Disorder. 

• If Chronic MDD = Dysthymia = 0 the primary diagnosis depression type is “recurrent major 

dep with incomplete interepisode recovery”   

• Marital status married is a binary variable which denotes whether marital status is 

married/defacto/in relationship 

• Marital status single is a binary variable which denotes whether marital status is single 

• If Marital status married = Marital status single = 0, marital status is 

widowed/divorced/separated 

We removed Schramm (2015) from analyses for dropout because it measured the dropouts at 8 weeks, while all 

the other studies measured them at 12 weeks. 

 

  



11 

 

Table S5. Parameter estimates for the IPD network meta-regression model for deterioration 

 

 
Description of the parameter mean 

Lower 

95% 

CrI 

Upper 

95% 

CrI 

Regression coefficients for 

prognostic factors 

β1 

HAM-D 
-0.87 -1.33 -0.43 

β2 

IDS anxiety factor 0.18 -0.08 0.45 

β3 

 (Social function)2 
0.06 -0.01 0.13 

β4 

 (HAM-D)2 -0.23 -0.54 0.07 

β5 

 (IDS anxiety factor)2 -0.15 -0.37 0.04 

β6 

IDS anxiety factor*HAM-D 0.32 -0.09 0.75 

β7 

Marital status married*HAM-

D 
-0.03 -0.43 0.36 

Regression coefficients for 

effect modification  

CBASP vs combination 

(HAM-D)2 0.18 -0.56 0.93 

Regression coefficients for 

effect modification  

medication vs combination 

HAM-D 0.00 -0.46 0.46 

Where: 
 

• HAM-D is 24-item HAM-D score at week 0 (continuous variable) 

• IDS anxiety factor is IDS anxiety/arousal factor at week 0 (continuous variable) 

• Social function is Global Assessment of Functioning score at week 0 (continuous variable) 

• Marital status married is a binary variable which denotes whether marital status is 

married/defacto/in relationship 

 

We removed Schramm (2015) from analyses from deterioration because its last outcome was at 8 weeks, while 

all the other studies measured them at 12 weeks. 
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Odds ratios for deterioration and 95% CrI are as follows. Values larger than 1 indicate that the second treatment 

in the comparison is favoured, i.e. it corresponds to a smaller probability of deterioration. 

 

Assumed baseline 

HAM-D score 
CBASP vs COMB CBASP vs MEDS MEDS vs COMB 

High (40) 
3.30 

(0.70, 16.06) 

2.23 

(0.52, 9.75) 

1.48 

(0.44, 5.14) 

Moderate (30) 
2.64 

(1.23, 5.84) 

1.78 

(0.89, 3.60) 

1.48 

(0.72, 3.08) 

Low (20) 
2.11 

(1.07, 4.22) 

1.42 

(0.74, 2.72) 

1.48 

(0.95, 2.32) 

 

Regarding relative effects, both COMB and MEDS appear to cause less deterioration than CBASP alone, and 

COMB appears to be better than MEDS. However, there is large uncertainty, as all but two ORs were not 

statistically significant. For high HAM-D scores there are very few events of deterioration, and thus the 

estimates are very uncertain. 

 

Comparing the regression coefficients across different baseline HAM-D scores, we can see that for MEDS vs 

COMB there is no effect modification. I.e. the relative effects for deterioration do not change with changes over 

the baseline HAM-D (the point estimate was always 1.48).  

On the other hand, the comparison CBASP vs COMB and CBASP vs MEDS appears to show weak evidence 

that for larger values of HAM-D the benefit of COMB over CBASP and of MEDS over CBASP is larger. But 

again there is large uncertainty in the estimates. 

 

Overall we conclude that there is no strong evidence of effect modification.  
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Supplement 4. Examination of inconsistency 

 

For the first primary outcome (efficacy) we focused at 8 weeks. At this time point all studies provided 

information. Two IFs were included in the model. The corresponding estimates were 0.7 (95% CrI -2.0 to 3.3) 

and 1.5 (-2.9 to 5.9) in the HAMD scale.  

For the second primary outcome (dropout) all analyses were performed at 12 weeks. Only one inconsistency 

factor was included in the model. The corresponding estimate was 0.12 (-0.69 to 0.90) in the logOR scale. 

Please refer to 3. Estimating inconsistency of Supplement 1 for the statistical models. 

 

 


	Supplement 1. Statistical details of variable selection and IPD network meta-regression
	Supplement 1. Statistical details of variable selection and IPD network meta-regression
	1 Individual-patients network meta-analysis model
	2 Individual-patients network meta-regression model
	3 Estimating inconsistency
	4 Selection of variables to be included in the meta-regression model
	5 Fitting the models

