Supplemental Materials and Methods
We developed a workflow using the analytics tool KNIME (1, 2) in combination with R (3) and Python (4) to predict drug-target interactions by integrating and analyzing drug side effect data and data from genome-wide association studies (GWAS).
Drug Side Effects
We extracted drug side effect information contained in the database SIDER (Side Effect Resource) (5), which compiles data from package inserts from several public sources such as the US Food and Drug Administration (FDA). We downloaded the file Sider_meddra_all_se.tsv.gz (downloaded Jan 2017), that contains 309,849 pairwise associations between PubChem Compound Identifiers (CID) and side effects annotated in the Medical Dictionary of Regulatory Activities (MedDRA). The CID of 1,556 compounds in this file was mapped to the names used in the STITCH database (6).For that, we utilized the file chemicals.v5.0.tsv.gz (downloaded in July 2017) containing the CID, the name, the molecular weight and the name for the compounds. This enabled us to annotate 1,541 compounds (hereafter named drugs for simplicity) with their name and their side effects (6,130 unique side effects).
Known Drug-Target Interactions
Known chemical-target interactions were downloaded from the STITCH (Search Tool for Interactions of Chemicals) database (6).STITCH is a combined repository that captures publicly available knowledge on protein–chemical associations by consolidating information from different sources such as DrugBank (7) using a confidence score. We restricted to the human organism (9606) and only included interactions that exceed a confidence score of 900 (equivalent to 0.9 on the website) to ensure interactions at the highest confidence level. For that, we used the information provided in file 9606.protein_chemical.links.v5.0.tsv.gz (downloaded Oct 2016) containing the CID of a drug, the Ensembl Protein ID of the protein and the confidence score of the interaction. We mapped the Ensembl Protein ID to the associated gene name using the mapping provided by the Ensembl Biomart (8).This enabled us to extract 145,486 pairs of drugs and genes encoding for targets. For simplicity, we will refer to genes that encode for drug targets as targets. The gathered data was then joined with the side effect annotations (see Drug Side Effects) yielding in 15,741 drug-target pairs with their annotated side effects.
GWAS Data
To extract data from genome-wide association studies, we made use of the comprehensive database GWASdb v2 (9, 10).GWASdb is a database containing genetic variants that are associated with human diseases. We downloaded the associations contained in the file gwasdb_20150819_snp_trait (Feb 2017) yielding 314,237 SNP-trait associations. We then applied a moderate p-value cut-off of 0.001 to include also associations with moderate effect (see also discussion). Subsequently, we filtered for those SNPs that are annotated with a gene symbol in the downloaded file. Thereby, we summarized the SNPs at the gene level with an average of 8.5 SNPs per gene. Altogether, this led to 66,054 gene symbol-trait associations for 13,692 gene symbols and 1,498 unique traits.
Principal Component Analysis
[bookmark: __Fieldmark__2529_213913096]Since drug side effect and GWAS data are correlated, we performed a Principal Component Analysis (11) to reduce the dimension of our input and train our model more efficiently. As described in method and result section Multilayer Perceptron and depicted in Fig.1, we used as input for the PCA a binary matrix with drug-gene pairs as rows and their associated profile of 6,130 side effects and 1,498 GWAS traits as columns. We utilized the PCA functionality implement in KNIME (1, 2). More specifically, we employed the KNIME nodes “PCA compute” and “PCA apply” and set the parameter to keep a minimum information fraction of 99%. This enabled us to reduce the number of dimensions from 7,628 to 1,439 without losing too much information (1%). We also tested our approach using less information preservation (90%) and found a decrease in the performance (see section Parameter tuning)
Multilayer Perceptron
We utilized the Multi-layer Perceptron (MLP) classifier implemented in the python package scitkit learn (12) for to classify, if a drug-target pair interacts or not. MLP is a feedforward artificial neural network, which constitutes a supervised learning algorithm that can be efficiently used to learn a non-linear function approximator for classification purposes (sklearn.neural_network.MLPClassifier, http://scikit-learn.org/stable/modules/neural_networks_supervised.html). We employed this MLP for the classification if a gene under consideration encodes for a drug target for the drug under consideration.
For the positive set, we used 11,294 known drug-target interactions of the STITCH database (see section Known Drug-Target Interactions), where we could gather GWAS information for the target (see section GWAS data) and side effect information for the drug (Drug Side Effects). For the negative set, we randomly sampled drug-gene pairs that are not interacting in STITCH. As in reality a random drug-gene pair is not likely to exhibit a biologically relevant interaction, we decided to use 10 times more negative pairs than positive pairs. We used the python function random (13) to independently sample drugs with side effect and genes with GWAS data, respectively, and made sure that the resulting pairs are not part of our positive set. All in all, we gathered 124,234 (11,294+10*11,294) unique drug-gene pairs, their GWAS traits and drug side effect associations.
Then, for each drug-target pair in our training data, we extracted the data profile (a vector representing 1 if a side effect or GWAS trait is present for that pair and -1 if it is not present, with n = 7,628 being the number of side effects and GWAS trait). We decided to decode the variable of the presence of a side effect or GWAS trait as -1 and 1 to achieve a robust estimator of location and scale.
To train the model more efficiently, we applied a Principal component analysis of the data profiles of all drug-target pairs (see section Principal Component analysis) and used the transformed data as input for our model. As described in section Parameter Tuning, we found the best performance using a neural network consisting of four layers, with two hidden layers each containing 1000 nodes. We used the rectified linear unit function as activation function.
As implemented in the package scikit-learn (12),we used backpropagation to efficiently adjust the weights in the model. Here, the output of the network per input vector is compared to the desired output using the log-loss function (Cross-Entropy) and an error value is calculated for each of the neurons in the output layer. The error values are then propagated backwards from the output layer to the previous layers, providing each weight parameter with an update value meant to decrease the loss. To minimize the loss function we use the Limited-memory Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm (L-BFGS) (14) as optimization method. This quasi-Newton method approximates the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm using a limited amount of computer memory by storing only a sparse approximation of the Hessian matrix. To diminish the effects of overfitting, we used a regularization term (L2 penalty) of the log function of 0.0001.
Parameter Tuning
To assess how our predictions generalize to an independent data set, we partitioned our data into training and test set. For that, we used the Partitioning node implemented in KNIME, and applied a stratified sampling on the class (target or no target) separating 70% (86,963 pairs) for training and 30% (37,271) for testing.
Before testing our approach with the test data, we used the training data to tune the parameters. More specifically, we further separated the training data for parameter tuning using the cross-validation functionality provided in KNIME. For that, we applied a stratified sampling on the class (target or no target) keeping 1/3 of the data for validation and 2/3 for training. We did that three times until all the data has been used for validation, while not been used for training. This enabled us to create ROC, and Precision-Recall plots by comparing the probability of an interaction in our model to the known class in our positve/negative dataset. To create these plots, we made use of the functionality provided by the R package ROCR (15). As depicted in Supplemental Fig 1, we created the two performance plots for different number of hidden layers in the network and nodes per layer as well as information preservation in the PCA. The default for the package scitkit learn consists of one hidden layer with 100 nodes, due to the complexity of our approach we decided to increase the number of hidden layers as well as nodes per layer and to evaluate the performance using these different settings. We used a network consisting of 4 layers, with 2 hidden layers a 100 nodes, a network consisting of 5 layers, with 3 hidden layers with 100 nodes, and a network consisting of 4 layers, with 2 hidden layers with 1000 nodes. For all the described networks, we used an information preservation of 99% in the PCA. Additionally, we performed the analysis using an information preservation of 90% in the PCA for a network consisting of 4 layers, with 2 hidden layers a 100 nodes. We found the best performance for the network with four layers, with two hidden layers containing 1000 nodes and a information preservation of 99% in the PCA. Using these parameters, we trained our model all training data and tested it on the test data and again used ROC and Precision Recall plots to evaluate the performance. We then used the test data to derive a model probability threshold above which we consider a drug-gene pair as interacting. For that, we applied the cost function provided in the R package ROCR to find an optimal cutoff between sensitivity and specificity. As we want to include only confident results, we decided to weight the cost of false-positives double than the cost of false-negatives. This resulted in a model probability threshold of 0.9282.

5

Reference:

1.	M. R. Berthold et al., KNIME-the Konstanz information miner: version 2.0 and beyond. AcM SIGKDD explorations Newsletter 11, 26-31 (2009).
2.	R. Silipo, M. P. Mazanetz, The KNIME cookbook. (KNIME Press, Zürich, Switzerland, 2012).
3.	R. C. Team, R language definition. Vienna, Austria: R foundation for statistical computing, (2000).
4.	G. Van Rossum, in USENIX Annual Technical Conference. (2007), vol. 41, pp. 36.
5.	M. Kuhn, I. Letunic, L. J. Jensen, P. Bork, The SIDER database of drugs and side effects. Nucleic acids research 44, D1075-D1079 (2015).
6.	M. Kuhn et al., STITCH 3: zooming in on protein–chemical interactions. Nucleic acids research 40, D876-D880 (2011).
7.	D. S. Wishart et al., DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic acids research 34, D668-D672 (2006).
8.	R. J. Kinsella et al., Ensembl BioMarts: a hub for data retrieval across taxonomic space. Database 2011, (2011).
9.	M. J. Li et al., GWASdb: a database for human genetic variants identified by genome-wide association studies. Nucleic acids research 40, D1047-D1054 (2011).
10.	M. J. Li et al., GWASdb v2: an update database for human genetic variants identified by genome-wide association studies. Nucleic acids research 44, D869-D876 (2015).
11.	H. Abdi, L. J. Williams, Principal component analysis. Wiley interdisciplinary reviews: computational statistics 2, 433-459 (2010).
12.	F. Pedregosa et al., Scikit-learn: Machine learning in Python. Journal of Machine Learning Research 12, 2825-2830 (2011).
13.	T. E. Oliphant, Python for scientific computing. Computing in Science & Engineering 9, (2007).
14.	C. Zhu, R. H. Byrd, P. Lu, J. Nocedal, Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization. ACM Transactions on Mathematical Software (TOMS) 23, 550-560 (1997).
15.	T. Sing, O. Sander, N. Beerenwinkel, T. Lengauer, ROCR: visualizing classifier performance in R. Bioinformatics 21, 3940-3941 (2005).

Supplemental Figures
[bookmark: _GoBack]Supplemental Figure 1: ROC and precision recall performance plot with different parameter settings using 3-fold-cross-validation. A network with 4 layers including 2 hidden layers with 100 nodes (black line), a network with of 5 layers including 3 hidden layers with 100 nodes (red line) and a network with 4 layers including 2 hidden layers with 1000 nodes (blue line) was used to train the model. We used a information preservation of 99% in the PCA. Additionally, we applied an information preservation of 90% in the PCA for a network with 4 layers including 2 hidden layers with 100 nodes (green line).

Supplemental Figure 2: ROC and perecision recall performance using 10-fold-cross-validation for a network with 4 layers including 2 hidden layers with 1000 nodes
Supplemental Tables
Table S1: High scoring results that receive a model probability above the derived threshold (2,156 pairs). For each drug-target pair, the probability of a drug-target interaction in our model, and the known class in our benchmark set from STITCH is shown.
Table S2: Results of the final model applied to the test set (37,271 pairs). The drug, the predicted target (gene product) and the model probability is shown.
Table S3: Results of the final model applied to all data (124,234 pairs). The drug, the predicted target (gene product) and the model probability for all our predictions is shown.
