
Supplement table 1 

Characteristics of natural occuring TH+ cells and of in vitro generated induced TH+ cells. 

 
Natural occuring TH+ neuronal cells in vivo 
Feature                          Phenotype or impact                                                                                                                                          Reference 

Regulation of TH phosphorylation status of subunits, environmental pH value, tetrahydrobiopterin (BH4), bivalent iron 
(Fe2+), product feedback inhibition, proteasomal degradation, hypoxia 

 
1-7 

Marker expression 
human TH+: TH, vesicular monoamine transporter 2 (VMAT-2), CD163, CD19, prolyl-4-hydroxylase,  
                     dopamine-β-hydroxylase (DBH), 3,4-dihydroxyphenylalanine (DOPA) decarboxylase 
murine TH+: TH, VMAT-2, intracellular catecholamines 

 
8 
9 

Appearance in vivo human TH+: in patients with chronic rheumatoid arthritis, osteoarthritis and multiple sclerosis 
murine TH+: highest at the beginning of chronic collagen-induced arthritis (CIA) 

8, 10-12 
9 

Organ specifity human TH+: synovial tissue and >>blood 
murine TH+: joint, lymph nodes, thymus, bone marrow, spleen,  

8, 10, 11 
9 

Effect in vitro human TH+: anti-inflammatory (inhibition of TNF); release of norepinephrine 8, 11 

Sensitivity murine TH+: targeted killing by 6-hydroxydopamine (6-OHDA) 9 

in vitro generated induced TH+ neuronal cells (iTH+) 

Differentiation factors 
human iTH+: sonic hedgehog (SHH), human fibroblast growth factor 8 (FGF8), basic fibroblast growth  
                     factor (bFGF), brain-derived neurotrophic factor (BDNF) 
murine iTH+: B27 supplement, SHH, FGF8, murine bFGF, human BDNF 

 
13 
14, 15 

Morphology human iTH+: neural tube–like structures; cell-connected rosette-like patterns 
murine iTH+: neuron-like; cell-connected rosette-like patterns 

16 
14 

Marker expression human iTH+: TH, β-III-tubuline, VMAT-2, nuclear receptor related 1 (Nurr1) 
murine iTH+: TH, β-III-tubuline, VMAT-2, Nurr1 

13 
14 

Secretion 
human iTH+: dopamine 
murine iTH+: norepinephrine, dopamine 

13 
14 

Effect in vivo 
murine iTH+: CIA: anti-inflammatory (decreased clinical arthritis score, less cell infiltration into  
                     synovial tissue) 

 
14 

Sensitivity human iTH+: reduced release of norepinephrine by TNF treatment 
murine iTH+: targeted killing by 6-OHDA 

17 
14 
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               Supplement table 2 

Summary of direct pro-/ anti-inflammatory and direct pro-/ anti-nociceptive effects mediated by selected cytokines and chemokines in antigen-
induced arthritis and other experimental arthritis models 

 
Cytokine/         Model,                Effect on 
Chemokine     Species               inflammation                                                                                                                                                                               

 
 
 nociception 

 
 
Reference 

IL-4 

AIA, m 
CIA, m 
K/BxN, m 
AA, m 
AA, r 

anti-inflammatory 
anti-inflammatory 
pro-inflammatory (requirement for induction) 
pro-inflammatory (requirement for induction) 
anti-inflammatory 

n.d. 
n.d. 
n.d. 
n.d. 
n.d. 

1 
2 
3 
4 
5 

IL-6 
AIA, m/r 
CIA, m 
K/BxN, m 

pro-inflammatory      
pro-inflammatory 
no influence 

pro-nociceptive (mechanical hyperalgesia) 
n.d. 
n.d. 

6-9 
10 
11 

IL-17A 
AIA, m/r 
CIA, m 
K/BxN, m 

no influence                                   
pro-inflammatory 
pro-inflammatory 

pro-nociceptive (mechanical hyperalgesia) 
n.d. 
n.d. 

12-14 
15, 16 
17 

TNFα 

AIA, m/r 
CIA, m 
K/BxN, m 
TNFtg, m 
CFA, r 
AA, r 

pro-inflammatory       
pro-inflammatory 
pro-inflammatory 
pro-inflammatory    
pro-inflammatory          
anti-inflammatory (by exogenous TNFα only)                   

pro-nociceptive (thermal & mechanical hyperalgesia) 
pro-nociceptive (thermal & mechanical hyperalgesia) 
pro-nociceptive (mechanical hyperalgesia) 
pro-nociceptive (thermal & mechanical hyperalgesia) 
pro-nociceptive (thermal & mechanical hyperalgesia) 
n.d. 

18, 19 
20, 21 
11, 22 
23, 24 
25 
26 

CXCL1 
(GRO-α) 

AIA, m 
CIA, m 
K/BxN, m 
CAIA, m 
AA, r 

pro-inflammatory       
pro-inflammatory 
pro-inflammatory 
pro-inflammatory 
pro-inflammatory 

pro-nociceptive (mechanical hyperalgesia) 
pro-nociceptive (mechanical hyperalgesia) 
n.d. 
n.d. 
n.d. 

14, 27-29 
30 
31, 32 
33 
34 

CXCL2 
(GRO-β) 

AIA, m 
CIA, m 

pro-inflammatory       
pro-inflammatory (on bone erosion only) & anti-inflammatory 

pro-nociceptive (mechanical hyperalgesia) 
n.d. 

29 
35, 36 

CCL5 
(RANTES) 

CIA, m  
AA, r 

pro-inflammatory 
pro-inflammatory 

n.d. 
n.d. 

37 
38, 39 

 

IL interleukin, TNF tumor necrosis factor, CCL Chemokine (C-C motif) ligand, RANTES regulated on activation normal T cell expressed and secreted, CXCL chemokine (C-X-C 
motif) ligand, GRO growth-regulated oncogene, AIA antigen-induced arthritis, CIA collagen-induced arthritis, K/BxN K/BxN serum transfer arthritis, AA adjuvant arthritis, TNFtg 
TNFα transgenic mice spontaneous arthritis, CFA complete Freund's adjuvant-induced arthritis, CAIA anti-collagen antibody-induced arthritis, m murine, r rat, n.d. no data  
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