
	   1	  

Supplement 3. Power analysis. 

In an age-comparative study with subjects ranging in age from 20 to 80+ years, we plan to have 
subjects walk on a beam (length: 4 m, height: 2cm) of varying widths (4 cm, 8 cm, 12 cm) with 
and without performing a secondary cognitive task at the same time (single-task vs. dual-task 
condition). The dependent variable is the distance subjects walk before stepping off the beam, 
averaged over three trials in each condition. The goal is to determine the diagnostic value of the 
beam tasks to predict falls in old age. The study protocol also measures a wide range of health-
related indices and cognitive-processing related abilities. These measures are to be used as 
covariates to predict future falls of participants. The basic expectation is that the beam tasks 
carry added value for this prediction. In this supplement the focus is only on the dependent 
variable walking Distance in the experimental design comprising the between-subject factors 
Age group and Sex and the within-subject factors single vs. dual Task and Width of beam. 

All analyses were done in the R environment [1]. For data processing and figures we used the 
tidyverse packages [2], the afex package [3], and the ggplot package [4]. R scripts used for the 
analyses in this supplement are considered as pre-registered analyses script for the final analyses 
and are available upon request. 

Pilot study 

Based on data in 20 Japanese young (10 female, M: 22 years , range: 19 to 25 years) and 16 old 
(9 female; M: 71 years, range: 66 to 77 years) healthy subjects [5], we derived hypotheses and an 
expected pattern of means. In this supplement we document the results of the pilot study and 
how we used them to arrive at estimates of statistical power for two theoretically relevant three-
factor interactions, namely Age x Sex x Task and Age x Sex x Width. 

Figure 1 displays the observed pattern of means of the Age(2) x Sex(2) x Task(2) x Width(3) 
design; errorbars are ±1 SE. There are clear ceiling effects for the beam width of 12 cm. 
Therefore, these data are no longer considered. A mixed-model ANOVA without the 12-cm 
beam width, yielded significant effects of Age, Task, and Width as well as significant Age x 
Task, Age x Width, and Sex x Width interactions – all of them in the expected canonical 
direction. The corresponding inferential statistics are shown in Table 1. 
 

Table 1. Sources of variance and statistics for Age (2) X Sex (2) x Task (2) x Width (2) mixed-
model ANOVA of pilot study. 
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Figure 1. Means of Age (2) X Sex (2) x Task (2) x Width (2) design of pilot study. Errorbars are 
±1 standard error of cell mean. 

None of the higher-order interactions were significant, but two of them (i.e., Age x Sex x Task 
and Age x Sex x Width) exhibited theoretically relevant complementary sex-related patterns. 
They will serve as targets for the planned project. Specifically, old male subjects appear to be 
especially affected by the dual-task condition; old female subjects appear to be especially 
affected by the narrow 4-cm width of the beam (Figures 3, 4). 

Extrapolation to full design 

We	  expand	  the	  experimental	  design	  to	  seven	  age	  groups	  instead	  of	  two,	  covering	  the	  seven	  
decades	  from	  20	  to	  80+	  years,	  that	  is	  Age	  (7)	  x	  Sex	  (2)	  x	  Task	  (2)	  x	  Width	  (2).	  The	  data	  of	  
this	  experiment	  are	  completely	  determined	  by	  (a)	  the	  means	  and	  standard	  deviations	  of	  
the	  14	  Age	  (7)	  x	  Sex	  (2)	  between-‐subject	  cells,	  (b)	  the	  correlations	  between	  4	  measures	  
relating	  to	  the	  Task	  (2)	  x	  Width	  (2)	  within-‐subject	  conditions,	  and	  the	  assumption	  that	  
residuals	  will	  be	  normally	  distributed.	  The	  R	  function	  mixedDesign(..., empirical=TRUE, ...),	  
a	  wrapper	  for	  the	  mvrnorm	  function	  from	  the	  MASS	  package	  [6]	  allows	  one	  to	  simulate	  data	  
from	  a	  multivariate	  normal	  distribution	  that	  exactly	  match	  the	  a	  priori	  specification	  [7].	  
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Starting with rounded means of the pilot study (see Figure 1 and means for A1 and A7 in Figure 
2), we extrapolated means and standard deviations for the intermediate five age groups A1 to A6 
as shown in Figure 2, assuming that differences would increase with age. This figure represents 
our expectation (hypothesis) for the pattern of means corresponding to the four-factor interaction 
of the design. We will use this profile of means to determine the sample size needed for adequate 
statistical power (~80%) to detect significant 3-factor interactions of Age x Sex x Task and Age 
x Sex x Condition under different assumptions for standard deviations and correlations. 

Expected means of full factorial design 

 
Figure 2. Extrapolated expected means of Age (7) X Sex (2) x Task (2) x Width (2) design for 
determination of statistical power. Errorbars are ±1 standard error of cell mean. 
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Three-factor interactions 

Given the profile of means shown in Figure 2, we can also compute and visualize the two 
theoretically critical 3-factor interactions implied by this specification: (1) Age x Sex x Task and 
(2) Age x Sex x Width. 

Age x Sex x Task 

As shown in Figure 3, according to our a priori specification, age differences in the task effect 
increase more strongly for male than female participants. 

 
Figure 3. Extrapolated expected Age x Sex x Task interaction. Errorbars are +/- 1 standard error 
of cell mean. This interaction is one of two targets of the power simulation. 
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Age x Sex x Width 

As shown in Figure 4, according to our a priori specification, age differences in the width effect 
increase more strongly for female than male participants. 

 
Figure 4. Extrapolated expected Age x Sex x Width interaction. Errorbars are +/- 1 standard 
error of cell mean. This interaction is one of two targets of the power simulation. 

Power simulations 

To determine statistical power for various scenarios, we simulate the experiment manifold using 
again the mixedDesign function. This time, however, we did not generate data that matched the 
specifications, but data that were drawn at random from a population with the specifications, that 
is mixedDesign(..., empirical=FALSE, ...). Specifically, we draw 500 random samples of an a 
priori specified size from a normal distribution with a priori specified population parameters 
representing expecected cell means and standard deviations as well as correlations within the cell 
means. 

Each of the 500 samples was analyzed with linear mixed model (LMM) using the lmer()function 
of the lme4 package [8]. We counted the number of significant effects for each source of 
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variance and divided this number by 500. This provided us with the power to detect the effect 
specified in the means of Figure 2. The results of these power analyses are summarized in Table 
2 and will be described below. 

 

Table 2. Results of power simulations 

 

Simulations with statistical assumptions met 

In this section, we determine the sample size needed for adequate statistical power for the two 
three-factor interactions assuming the profile of means of Figure 2 and that critical statistical 
assumptions are met. Note that the actual sample size will be largerThe assumptions comprise: 

(1) balanced design (equal n in all cells) 
(2) homogeneity of variance equal standard deviations in all cells 
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(3) sphericity (equal correlations in all cells) 

In addition, we assumed that age trends are at most quadratic, that is we specified a linear and 
quadratic effect of age for the factor Age (see Figures 2 to 4). Preliminary analyses also revealed 
that statistical power is only realistic for interactions between the linear trend of age with the 
other factors. Therefore, as far as Age is concerned, we included main effects for linear and 
quadratic effects of age, but interactions only between the linear effect of Age and the other three 
factors. 

A sample size of 15 men and 15 women (30 in each age group) represents a very realistic 
scenario of a balanced design for this study, given that we must expect an increasing dropout rate 
especially in the oldest age bracket. We assume a standard deviation of 1.0 and a correlation of 
.70. 

The first column of Table 2 shows the probabilities that main effects and interactions are 
significant at the 5% level of error. Statistical power for the two critical interactions was .67 
(Age x Sex x Task) and .68 (Age x Sex x Task), respectively. 

The second column of Table 2 displays statistical power with 20 subject in each design cell (40 
subjects in each age group). Statistical power for the two interactions increased to .78 and .81, 
respectively. 

The third column of Table 2 shows that statistical power for the interactions was reduced if the 
correlation is not .70, but .50. They are now at .56 and .60, respectively. 

Simulation with violation of statistical assumption 

Statistical assumptions underlying analytical computation of statistical power are rarely realistic. 
Restriction of range in scores due to ceiling effects (e.g., 12-cm beam widths in single task 
conditions), age-group related differences in standard deviations (i.e., violation of assumption of 
homogeneity of variance) or in correlations between dependent measures (i.e., violation of 
assumption of sphericity) are difficult to take into account. Finally, it may be difficult to recruit 
enough participants for some of the cells of the design. 

The power simulation used in this supplement allowed us to explore the consequences of varying 
assumptions about standard deviations in the between-subject cells of the design and about 
correlations between the within-subject measures. In principle, we could also explore the 
consequences of unbalanced designs. 

As an example, we “violated” the assumption of equal standard deviations (SDs) as observed in 
the pilot data: For cells with a large mean (i.e. > 3.50), there was a restriction of range because 
the maximum value was 4 m. For all cells with the single-task condition this restriction resulted 
in a reduction of SDs from 1.0 to .50; for cells with the dual-task condition SDs depended on age 
(.50 for the two youngest age groups, .6 for the next three age groups, and 1.0 for the two oldest 
age groups). The differences in SDs are also shown in different errorbars in Figure 2). Running 
the simulations with these SDs yielded the statistical power estimates for the two 3-factor 
interactions displayed in the last column of Table 2 (i.e., .68 and .74, respectively). 

When assumptions are violated one must check whether the violation changes the nominal alpha 
under the null hypothesis. This was not the case in this instance. Running the simulation under 
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the assumption of the null hypothesis (i.e., no differences between means) yielded 4.6% and 5% 
significant interactions. 

References 
1	   R Development Core Team:	  R:	  A	  language	  and	  environment	  for	  statistical	  computing	  

Vienna,	  R	  Foundation	  for	  Statistical	  Computing.,	  2018,	  	  
2	   Wickham	  H,	  Grolemund	  G:	  R	  for	  data	  science.	  New	  York,	  O’Reilly,	  2017.	  
3	   Singmann	  H,	  Bolker	  B,	  Westfall	  J,	  Aust	  F:	  Analysis	  of	  factorial	  experiments.	  Vienna,	  R	  

Foundation	  for	  Statistical	  Computing,	  2018,	  	  
4	   Wickham	  H:	  ggplot2:	  Elegant	  graphics	  for	  data	  analysis.	  .	  New	  York,	  Springer,	  2009.	  
5	   Uematsu	  A,	  Tsuchiya	  K,	  Yokei	  H,	  Suzuki	  S,	  Hortobágyi	  T:	  Cognitive	  dual-‐tasking	  

augments	  age-‐differences	  in	  dynamic	  balance	  during	  beam	  walking.	  Exp	  Gerontol	  
Submitted	  

6	   Venables	  WN,	  Ripley	  BD:	  Modern	  applied	  statistics	  with	  S,	  ed	  4th.	  New	  York,	  
Springer,	  2002.	  

7	   Hohenstein	  S,	  Kliegl	  R:	  Simulation	  of	  factorial	  mixed-‐model	  designs	  in	  R:	  The	  
mixedDesign()	  Function,	  2012,	  	  

8	   Bates	  D,	  Maechler	  M,	  Bolker	  B,	  Walker	  S:	  lme4:	  Linear	  mixed-‐effects	  models	  using	  
Eigen	  and	  S4	  Vienna,	  R	  Foundation	  for	  Statistical	  Computing,	  2016,	  	  

 


