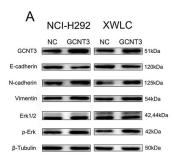
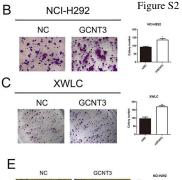
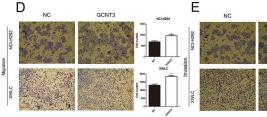
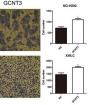
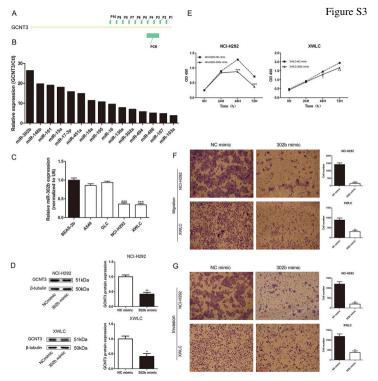

Supplementary Material

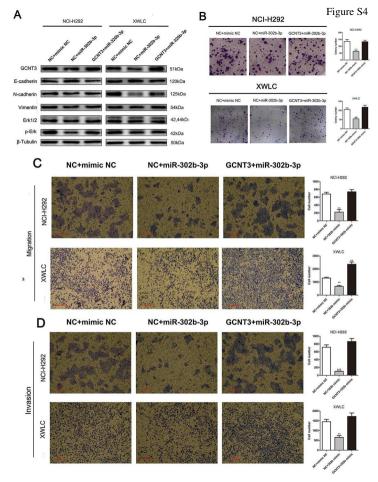

Downregulation of N-Acetylglucosaminyltransferase GCNT3 by miR-302b-3p Decreases Non-Small Cell Lung Cancer (NSCLC) Cell Proliferation, Migration and Invasion


Qian Li^{a,b} Pengzhan Ran^a Xiyu Zhang^a Xiaopeng Guo^a Yuncang Yuan^a Tianqi Dong^a Bei Zhu^a Shangyong Zheng^a Chunjie Xiao^a


^aSchool of Medicine, Yunnan University, Kunming, ^bTransfusion Medicine Research Department, Yunnan University, Kun ming, China







1	Figure S1. GCNT3 knockdown inhibited NSCLC cell migration, invasion and induced cell
2	cycle arrest and apoptosis. (A) The cell cycle progression of XWLC and NCI-H292 cell
3	transfected with si-GCNT3 or siNC were measured by flow cytometry assay using PI staining. The
4	bar chart represented the percentage of cell in G0/G1, S, or G2/M phase, as indicated. (B) Cell
5	apoptosis of XWLC and NCI-H292 cell lines transfected with siGCNT3 or siNC was measured by
6	Annexin V-PI double staining followed by flow cytometry analysis. (C) Western blotting assay
7	detected E-cadherin, N-cadherin, Vimentin, Cyclin D1, Erk and p-Erk expression after GCNT3
8	knockdown in NSCLC cell, and β -Tubulin was used as the loading control. (D, E) Migration and
9	invasion of XWLC and NCI-H292 cell lines transfected with siGCNT3 or siNC were measured by
10	transwell assay after 48h. For invasion assay, the upper chamber was pre-coated with Matrigel. The
11	cell was photographed and counted under a microscope in randomly selected fields. All data was
12	presented as the mean ± standard error of experiments performed in triplicate, and comparisons
13	between groups were performed using <i>t</i> -tests. (* $P < 0.05$; ** $P < 0.01$; *** $P < 0.001$; Scale bar: 250
14	μm)

15

Figure S2. GCNT3 overexpression promoted NSCLC cell proliferation, migration and invasion. (A)Western blotting assay detected E-cadherin, N-cadherin, Vimentin, Erk and p-Erk expression after GCNT3 overexpression in NSCLC cells, and β -Tubulin was used as the loading control. (**B**, **C**) Colony-forming assays were used to detect the proliferation of GCNT3-vectortransfected XWLC and NCI-H292 cells. All data was presented as the mean ± standard error of experiments performed in triplicate, and comparisons between groups were performed using *t*-tests. (**D**, **E**) Migration and invasion of XWLC and NCI-H292 cell lines transfected with GCNT3-vector

23 or NC were measured by transwell assay after 48h. For invasion assay, the upper chamber was pre-24 coated with Matrigel. The cells were photographed and counted under a microscope in randomly 25 selected fields. Data was presented as mean \pm SD based on at least three repeated experiments. (**P* 26 < 0.05; ***P* < 0.01; ****P* < 0.001; Scale bar: 250 µm)

27

28	Figure S3. GCNT3 was the target of miR-302b-3p, and miR-302b-3p overexpression inhibited
29	NSCLC cell proliferation, migration, invasion. (A) GCNT3 mRNA, probe binding sites and
30	region analyzed by qRT-PCR. (B) qRT-PCR of multiplex miRNA data of GCNT3 probe affinity
31	purification in XWLC cell. Shown data were normalized values for the enriched miRNAs (>3 fold).
32	(C) Real-time RT-PCR analyzed miR-302b-3p expression in four human NSCLC cell lines (A549,
33	GLC, XWLC and NCI-H292) and a human Normal pulmonary epithelial cell line (BEAS-2B). (D)
34	Western blot determined GCNT3 expression after miR-302b-3p upregulated. β -Tubulin was used as
35	the loading control. (E) CCK8 assay was performed to measure the proliferation of XWLC and
36	NCI-H292 cell lines at 0, 24, 48 and 72 h after miR-302b-3p mimic or NC mimic (control)
37	transfection. (F, G) Migration and invasion of XWLC and NCI-H292 cell lines transfected with
38	miR-302b-3p mimic or NC mimic were measured by transwell assay after 48h. For invasion assay,
39	the upper chamber was pre-coated with Matrigel. The cell were photographed and counted under a
40	microscope in randomly selected fields. All data was presented as the mean ± standard error of
41	experiments performed in triplicate, and comparisons between groups were performed using t-tests.
42	(* $P < 0.05$; ** $P < 0.01$; *** $P < 0.001$; Scale bar: 250 µm)

43

44 Figure S4. miR-302b-3p inhibited NSCLC cell proliferation, migration and invasion in a

45	GCNT3-dependent manner. (A)Western blotting assay detected E-cadherin, N-cadherin,
46	Vimentin, Erk and p-Erk expression after NSCLC cell transfected with miR-302-3p alone or
47	GCNT3 vector and miR-302b-3p in combination, and β -Tubulin was used as the loading control.
48	(B) Colony-forming assays was used to detect the proliferation of XWLC and NCI-H292 cells
49	transfected with miR-302b-3p alone or GCNT3 vector and miR-302b-3p in combination. Data were
50	based on at least 3 independent experiments, and shown as mean \pm SD. (C, D) Migration and
51	invasion of XWLC and NCI-H292 cell lines transfected with miR-302b-3p alone or GCNT3 vector
52	and miR-302b-3p in combination were measured by transwell assay after 48h. For invasion assay,
53	the upper chamber was pre-coated with Matrigel. The cells were photographed and counted under
54	a microscope in randomly selected fields. All data was presented as the mean ± standard error of
55	experiments performed in triplicate, and comparisons between groups were performed using t-tests.
56	(* $P < 0.05$; ** $P < 0.01$; *** $P < 0.001$; Scale bar: 250 µm)