Supplementary Material

Proteome and Transcriptome Reveal Involvement of Heat Shock Proteins and Indoleacetic Acid Metabolism Process in Lentinula Edodes Thermotolerance

Gang-Zheng Wang^{a,b} Yi Luo^{a,b} Chao-Jun Ma^{a,b} Yan Zhou^{a,b} Sha-Sha Zhou^{a,b} Ying-Li Cai^{a,b} Xiao-Long Ma^{a,b} Jing-Jing Yu^{a,b} Yin-Bing Bian^{a,b} Yu-Hua Gong^{a,b}

^aInstitute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, ^bKey Laboratory of Agro-Microbial Resource Comprehensive Utilization, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China

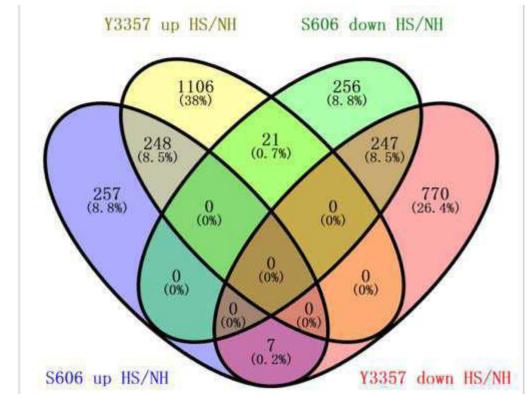


Fig. S1 Venn diagram showing number of different expression genes before and after heat stress for two *L. edodes* strains. Y3357, YS3357.

Figure S2

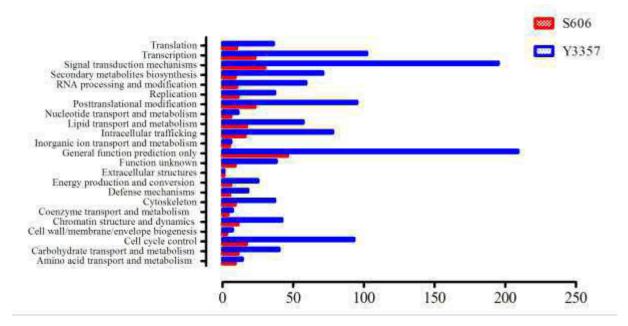


Fig. S2 KOG analysis of different expression genes before and after heat stress for two *L. edodes* strains. Y3357, YS3357.

Figure S3

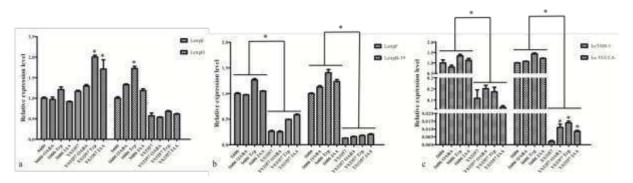


Fig. S3 qRT-PCR analysis of the genes related to tryptophan and IAA biosynthesis with or without exogenous tryptophan, OABA and IAA. ** indicates the significant difference.