Characteristics of natural occuring TH^+ cells and of *in vitro* generated induced TH^+ cells.

Natural occuring TH ¹	neuronal cells	in vivo
----------------------------------	----------------	---------

Feature	Phenotype or impact	Reference
Regulation of TH	phosphorylation status of subunits, environmental pH value, tetrahydrobiopterin (BH ₄), bivalent iron (Fe ²⁺), product feedback inhibition, proteasomal degradation, hypoxia	
Marker expression	human TH ⁺ : TH, vesicular monoamine transporter 2 (VMAT-2), CD163, CD19, prolyl-4-hydroxylase, dopamine-β-hydroxylase (DBH), 3,4-dihydroxyphenylalanine (DOPA) decarboxylase murine TH ⁺ : TH, VMAT-2, intracellular catecholamines	
Appearance in vivo	Appearance <i>in vivo</i> human TH ⁺ : in patients with chronic rheumatoid arthritis, osteoarthritis and multiple sclerosis murine TH ⁺ : highest at the beginning of chronic collagen-induced arthritis (CIA)	
Organ specifity	Organ specifity human TH ⁺ : synovial tissue and >>blood murine TH ⁺ : joint, lymph nodes, thymus, bone marrow, spleen,	
Effect <i>in vitro</i> human TH ⁺ : anti-inflammatory (inhibition of TNF); release of norepinephrine		8, 11
Sensitivity murine TH ⁺ : targeted killing by 6-hydroxydopamine (6-OHDA)		9

in vitro generated induced TH⁺ neuronal cells (iTH⁺)

Differentiation factors	human iTH ⁺ : sonic hedgehog (SHH), human fibroblast growth factor 8 (FGF8), basic fibroblast growth factor (bFGF), brain-derived neurotrophic factor (BDNF) murine iTH ⁺ : B27 supplement, SHH, FGF8, murine bFGF, human BDNF	13 14, 15
Morphology	blogy human iTH ⁺ : neural tube–like structures; cell-connected rosette-like patterns murine iTH ⁺ : neuron-like; cell-connected rosette-like patterns	
Marker expression human iTH ⁺ : TH, β-III-tubuline, VMAT-2, nuclear receptor related 1 (Nurr1) murine iTH ⁺ : TH, β-III-tubuline, VMAT-2, Nurr1		13 14
Secretion	human iTH ⁺ : dopamine murine iTH ⁺ : norepinephrine, dopamine	13 14
Effect in vivo	murine iTH ⁺ : CIA: anti-inflammatory (decreased clinical arthritis score, less cell infiltration into synovial tissue)	14
Sensitivity human iTH ⁺ : reduced release of norepinephrine by TNF treatment murine iTH ⁺ : targeted killing by 6-OHDA		17 14

References Supplement table 1

- 1 Dunkley PR et al. Tyrosine hydroxylase phosphorylation: regulation and consequences. J Neurochem 2004;91:1025–43.
- 2 Haycock JW. Phosphorylation of tyrosine hydroxylase in situ at serine 8, 19, 31, and 40. J Biol Chem 1990;265:11682–91.
- **3** Haavik J et al. pH-dependent release of catecholamines from tyrosine hydroxylase and the effect of phosphorylation of Ser-40. FEBS Lett 1990;262:363–65.
- 4 Schmidt TS & Alp NJ. Mechanisms for the role of tetrahydrobiopterin in endothelial function and vascular disease. Clin Sci (Lond) 2007;113:47-63.
- 5 Nakashima A. Proteasomal degradation of tyrosine hydroxylase and neurodegeneration. J Neurochem 2012;120:199–201.
- 6 Kumar GK et al. Activation of tyrosine hydroxylase by intermittent hypoxia: involvement of serine phosphorylation. J Appl Physiol 2003;95:536–44.
- 7 Kumar GK. Hypoxia. 3. Hypoxia and neurotransmitter synthesis. Am J Physiol Cell Physiol 2011;300:C743–51.
- 8 Capellino S et al. Catecholamine-producing cells in the synovial tissue during arthritis: modulation of sympathetic neurotransmitters as new therapeutic target. Ann Rheum Dis 2010;69(10):1853-60.
- 9 Capellino S et al. First appearance and location of catecholaminergic cells during experimental arthritis and elimination by chemical sympathectomy. Arthritis Rheum 2012;64(4):1110-8.
- 10 Miller LE et al. The loss of sympathetic nerve fibers in the synovial tissue of patients with rheumatoid arthritis is accompanied by increased norepinephrine release from synovial macrophages. FASEB J 2000;14(13):2097-107.
- 11 Miller LE et al. Norepinephrine from synovial tyrosine hydroxylase positive cells is a strong indicator of synovial inflammation in rheumatoid arthritis. J Rheumatol 2002;29(3):427-35.
- 12 Cosentino M et al. Catecholamine production and tyrosine hydroxylase expression in peripheral blood mononuclear cells from multiple sclerosis patients: effect of cell stimulation and possible relevance for activation-induced apoptosis. J Neuroimmunol 2002;133: 233–40.
- 13 Trzaska KA & Rameshwar P. Dopaminergic neuronal differentiation protocol for human mesenchymal stem cells. Methods Mol Biol 2011;698:295–303.
- 14 Jenei-Lanzl Z et al. Anti-inflammatory effects of cell-based therapy with tyrosine hydroxylase-positive catecholaminergic cells in experimental arthritis. Ann Rheum Dis 2015;74(2):444-51.
- 15 Zhu H et al. A protocol for isolation and culture of mesenchymal stem cells from mouse compact bone. Nat Protoc 2010;5:550–60.
- 16 Zhang SC et al. In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol 2001;19:1129–33.
- 17 Herrmann M et al. TNF inhibits catecholamine production from induced sympathetic neuron-like cells in rheumatoid arthritis and osteoarthritis in vitro. Sci Rep 2018;8:9645.

Supplement table 2

Summary of direct pro-/ anti-inflammatory and direct pro-/ anti-nociceptive effects mediated by selected cytokines and chemokines in antigeninduced arthritis and other experimental arthritis models

Cytokine/	Model,	Effect on		
Chemokine	Species	inflammation	nociception	Reference
	AIA, m	anti-inflammatory	n.d.	1
	CIA, m	anti-inflammatory	n.d.	2
IL-4	K/BxN, m	pro-inflammatory (requirement for induction)	n.d.	3
	AA, m	pro-inflammatory (requirement for induction)	n.d.	4
	AA, r	anti-inflammatory	n.d.	5
	AIA, m/r	pro-inflammatory	pro-nociceptive (mechanical hyperalgesia)	6-9
IL-6	CIA, m	pro-inflammatory	n.d.	10
	K/BxN, m	no influence	n.d.	11
IL-17A	AIA, m/r	no influence	pro-nociceptive (mechanical hyperalgesia)	12-14
	CIA, m	pro-inflammatory	n.d.	15, 16
	K/BxN, m	pro-inflammatory	n.d.	17
	AIA, m/r	pro-inflammatory	pro-nociceptive (thermal & mechanical hyperalgesia)	18, 19
	CIA, m	pro-inflammatory	pro-nociceptive (thermal & mechanical hyperalgesia)	20, 21
TNFα	K/BxN, m	pro-inflammatory	pro-nociceptive (mechanical hyperalgesia)	11, 22
INFU	TNFtg, m	pro-inflammatory	pro-nociceptive (thermal & mechanical hyperalgesia)	23, 24
	CFA, r	pro-inflammatory	pro-nociceptive (thermal & mechanical hyperalgesia)	25
	AA, r	anti-inflammatory (by exogenous TNFα only)	n.d.	26
	AIA, m	pro-inflammatory	pro-nociceptive (mechanical hyperalgesia)	14, 27-29
CXCL1	CIA, m	pro-inflammatory	pro-nociceptive (mechanical hyperalgesia)	30
(GRO-α)	K/BxN, m	pro-inflammatory	n.d.	31, 32
	CAIA, m	pro-inflammatory	n.d.	33
	AA, r	pro-inflammatory	n.d.	34
CXCL2	AIA, m	pro-inflammatory	pro-nociceptive (mechanical hyperalgesia)	29
(GRO-β)	CIA, m	pro-inflammatory (on bone erosion only) & anti-inflammatory	n.d.	35, 36
CCL5	CIA, m	pro-inflammatory	n.d.	37
(RANTES)	AA, r	pro-inflammatory	n.d.	38, 39

IL interleukin, *TNF* tumor necrosis factor, *CCL* Chemokine (C-C motif) ligand, *RANTES* regulated on activation normal T cell expressed and secreted, *CXCL* chemokine (C-X-C motif) ligand, *GRO* growth-regulated oncogene, *AIA* antigen-induced arthritis, *CIA* collagen-induced arthritis, *K/BxN* K/BxN serum transfer arthritis, *AA* adjuvant arthritis, *TNFtg* TNFα transgenic mice spontaneous arthritis, *CFA* complete Freund's adjuvant-induced arthritis, *CAIA* anti-collagen antibody-induced arthritis, *m* murine, *r* rat, *n.d.* no data

References Supplement table 2

- 1 Yoshino S et al. Enhancement of T-cell-mediated arthritis in mice by treatment with a monoclonal antibody against interleukin-4. Cell Immunol 1998;185:153-7.
- 2 Marcelletti JF et al. Collagen-induced arthritis in mice. Relationship of collagen-specific and total IgE synthesis to disease. J Immunol 1991;147:4185-91.
- 3 Ohmura K et al. Interleukin-4 can be a key positive regulator of inflammatory arthritis. Arthritis Rheum. 2005;52:1866-75.
- 4 Yoshino S et al. Successful induction of adjuvant arthritis in mice by treatment with a monoclonal antibody against IL-4. J Immunol 1998;161:6904-8.
- 5 Boyle DL et al. Intra-articular IL-4 gene therapy in arthritis: anti-inflammatory effect and enhanced th2activity. Gene Ther 1999;6(12):1911-8.
- 6 Ebbinghaus M et al. Interleukin-6-dependent influence of nociceptive sensory neurons on antigen-induced arthritis. Arthritis Res Ther. 2015;17:334.
- 7 Boettger MK et al. Differential effects of locally and systemically administered soluble glycoprotein 130 on pain and inflammation in experimental arthritis. Arthritis Res Ther. 2010;12:R140.
- 8 Vazquez E et al. Spinal IL-6 is an amplifier of arthritic pain in the rat. Arthritis Rheum 2012;64:2233-42.
- 9 Nowell MA et al. Soluble IL-6 receptor governs IL-6 activity in experimental arthritis: blockade of arthritis severity by soluble glycoprotein130. J Immunol 2003;171:3202-9.
- 10 Alonzi T et al. Interleukin 6 is required for the development of collagen-induced arthritis. J Exp Med 1998;187:461-8.
- 11 Ji H et al. Critical roles for interleukin 1 and tumor necrosis factor alpha in antibody-induced arthritis. J Exp Med. 2002;196:77-85.
- 12 Ebbinghaus M et al. Interleukin-17A is involved in mechanical hyperalgesia but not in the severity of murine antigen-induced arthritis. Sci Rep. 2017;7:10334.
- **13** Richter F et al. Interleukin-17 sensitizes joint nociceptors to mechanical stimuli and contributes to arthritic pain through neuronal interleukin-17 receptors in rodents. Arthritis Rheum. 2012;64:4125-34.
- 14 Pinto LG et al. IL-17 mediates articular hypernociception in antigen-induced arthritis in mice. Pain 2010;148:247-56.
- 15 Chabaud M et al. IL-17 derived from juxta-articular bone and synovium contributes to joint degradation in rheumatoid arthritis. Arthritis Res 2001;3:168-77.
- 16 Nakae S et al. IL-17 production from activated T cells is required for the spontaneous development of destructive arthritis in mice deficient in IL-1 receptor antagonist. Proc Natl Acad Sci USA 2003;100:5986-90.
- 17 Katayama M et al. Neutrophils are essential as a source of IL-17 in the effector phase of arthritis. PLoS ONE 2013;8(5)
- Boettger MK et al. Antinociceptive effects of TNF-α neutralization in a rat model of antigen-induced arthritis: evidence of a neuronal target. Arthritis Rheum 2008;58:2368-78.
- **19** Sachs D et al. Cooperative role of tumour necrosis factor-α, interleukin-1β and neutrophils in a novel behavioural model that concomitantly demonstrates articular inflammation and hypernociception in mice. Br J Pharmacol 2011;162:72-83.
- 20 McCann FE et al. Selective tumor necrosis factor receptor I blockade is antiinflammatory and reveals immunoregulatory role of tumor necrosis factor receptor II in collagen-induced arthritis. Arthritis Rheum 2014;66:2728-38.
- 21 Inglis JJ et al. Collagen-induced arthritis as a model of hyperalgesia: functional and cellular analysis of the analgesic actions of tumor necrosis factor blockade. Arthritis Rheum. 2007;56:4015-23.

- 22 Christianson CA et al. Characterization of the acute and persistent pain state present in K/BxN serum transfer arthritis. Pain 2010;151:394-403.
- 23 Keffer J et al. Transgenic mice expressing human tumour necrosis factor: a predictive genetic model of arthritis. EMBO J 1991;10:4025-31.
- 24 Hess A et al. Blockade of TNF-alpha rapidly inhibits pain responses in the central nervous system. Proc Natl Acad Sci USA 2011;108:3731-36.
- Inglis JJ et al. The differential contribution of tumour necrosis factor to thermal and mechanical hyperalgesia during chronic inflammation. Arthritis Res Ther 2005;7:R807–
 16.
- 26 Kim EY et al. Exogenous tumour necrosis factor alpha induces suppression of autoimmune arthritis. Arthritis Res Ther 2008;10:R38.
- 27 Kehoe O et al. Syndecan-3 is selectively pro-inflammatory in the joint and contributes to antigen-induced arthritis in mice. Arthritis Res Ther 2014;16:R148.
- 28 Grespan R et al. CXCR2-specific chemokines mediate leukotriene B4-dependent recruitment of neutrophils to inflamed joints in mice with antigen-induced arthritis. Arthritis Rheum 2008;58:2030-40.
- 29 Coelho FM et al. The chemokine receptors CXCR1/CXCR2 modulate antigen-induced arthritis by regulating adhesion of neutrophils to the synovial microvasculature. Arthritis Rheum 2008;58:2329-37.
- 30 Cunha TM et al. Treatment with DF 2162, a non-competitive allosteric inhibitor of CXCR1/2, diminishes neutrophil influx and inflammatory hypernociception in mice. Br J Pharmacol 2008;154:460-70.
- Jacobs JP et al. Deficiency of CXCR2, but not other chemokine receptors, attenuates autoantibody-mediated arthritis in a murine model. Arthritis Rheum 2010;62:1921 32.
- 32 Santos LL et al. Macrophage migration inhibitory factor regulates neutrophil chemotactic responses in inflammatory arthritis in mice. Arthritis Rheum 2011;63:960-70.
- 33 Min SH et al. Pharmacological targeting reveals distinct roles for CXCR2/CXCR1 and CCR2 in a mouse model of arthritis. Biochem Biophys Res Commun 2010;391:1080-6.
- 34 Barsante MM et al. Blockade of the chemokine receptor CXCR2 ameliorates adjuvant-induced arthritis in rats. Br J Pharmacol 2008;153:992-1002.
- 35 Ha J et al. CXC chemokine ligand 2 induced by receptor activator of NF-kappa B ligand enhances osteoclastogenesis. J Immunol 2010;184:4717-24.
- 36 Kasama T et al. Interleukin-10 expression and chemokine regulation during the evolution of murine type II collagen-induced arthritis. J Clin Invest 1995;95:2868-76.
- 37 Plater-Zyberk C et al. Effect of a CC chemokine receptor antagonist on collagen induced arthritis in DBA/1 mice. Immunol Lett 1997;57:117-20.
- Barnes DA et al. Polyclonal antibody directed against human RANTES ameliorates disease in the Lewis rat adjuvant-induced arthritis model. J Clin Invest 1998;101:2910 9.
- 39 Shahrara S et al. Amelioration of rat adjuvant-induced arthritis by Met-RANTES. Arthritis Rheum 2005;52:1907-19.