Genetic knowledge within a national Australian sample: Comparisons with other diverse populations

Ilan Dar-Nimrod ${ }^{1,2}$, Georgia MacNevin ${ }^{1}$, Alexandra Godwin ${ }^{1}$, Kate Lynch ${ }^{2,3}$, Tali Magory Cohen ${ }^{4}$, Asha Ganesan ${ }^{1}$, and James Morandini ${ }^{1}$

${ }^{1}$ School of Psychology, University of Sydney, ${ }^{2}$ The Charles Perkins Centre, University of Sydney, ${ }^{3}$ Macquarie University, ${ }^{4}$ Tel Aviv University

Please address correspondence to:

Ilan Dar-Nimrod
School of Psychology | Faculty of Science
Rm No, 420 Brennan MacCallum Building, A18
The University of Sydney | NSW | 2006 | Australia
T +61293512908 |F +61290365223 | ilan.dar-nimrod@ sydney.edu.au

Method (Additional information)

Remoteness evaluations:

In line with the Australian Bureau of Statistics (ABS, 2005), postcodes were coded based on the Accessibility/Remoteness Index of Australia (ARIA) developed by the Commonwealth Department of Health and Aged Care (DHAC) and the National Key Centre for Social Applications of GIS (GISCA). Scores ranged from 0-15 with lower scores indicating major cities and higher scores indicating increasing remoteness. For descriptive purposes and in line with the ABS (2005), these scores were summarised into the following Remoteness Areas (RAs): major cities, inner regional, outer regional, remote, and very remote.

Genetic knowledge and affinity:

Overall exposure to genetic information was calculated by averaging two items that assessed the level of study and work in the area of genetics. That is, "Does your work (not study) involve genetics and inheritance?" and "Have you studied genetics and inheritance before (as a school/university subject, or part of a more general course)?" The two items were moderately and positively correlated ($\mathrm{r}=.38, \mathrm{p}<.001$). Lower scores indicated more exposure to genetics. For example, the profession item offered the following options: $1=$ Yes, my work mostly focuses on genetics and inheritance (e.g., geneticist, genetic counsellor); 2 = Yes, my work involves genetics and inheritance, but it is not the main focus (e.g., doctor, science teacher); and $3=$ No, I do not do work involving genetics and inheritance. Averaged scores ranged from 1-3 with lower scores indicating greater exposure to genetic information.

Genetic affinity was calculated by averaging two items $(\mathrm{r}=.39, \mathrm{p}<.001)$ that assessed level of interest in and perceived understanding of genetic information. That is
"How well do you feel like you understand genetics and inheritance?" and "How interested are you in genetics and inheritance?" Lower scores on each item indicated greater genetic affinity. For example, $1=$ Very Well, $2=$ Quite well, $3=$ Not very well, and $4=\operatorname{Not}$ at all. Averaged scores ranged from 1-4 with the lower scores indicating greater genetic affinity.

Detailed demographics:

For ethnicity, Middle Eastern (10 responses), Aboriginal/Torres Strait Islander (5 responses), Pacific Islander (4 responses), and Multi-ethnic (17 responses), and other (35 responses) were collapsed into the category of other. For State/Territory, the Australian Capital Territory (ACT; 15 responses), Northern Territory (NT; 1 responses) and Tasmania (17 responses), were collapsed into the category of other. For religious background, Buddhism (14 responses), Hinduism (13 responses), Islam (13 responses), Judaism (6 responses), and other (30 responses) were collapsed into the category of other. As the current sample had very few respondents that indicated a high level of exposure to genetics (12 responses) or medium level of exposure to genetics (18 responses), these were collapsed into a single category. The majority of the sample resided in New South Wales and in major cities. The demographic information about the samples of the comparison studies appears in Table S1.

Table S1. Details of the demographic characteristics of the respondents from previous studies.

Study	Christensen et al. 2009	Jallinoja \& Aro 1999	Molster et al. 2009	Ashida et al. 2011
Sample size	1,200	1,216	1,009	971
Country	USA	Finland	Western Australia	USA
Age	18-90	16-65	18+	18+
Ethnicity	Black, White	-	-	Black, White, Hispanic, other
Education	7 levels	4 levels	5 levels	3 levels
Household income/ socioeconomic status	4 levels	6 levels	4 levels	-
Occupation	-	health profession	-	-
Marital status	-	3 levels	-	-
Employme nts status	-	yes/no	-	-
Geographic location	-	-	Metropolitan, Rural/remote	-
Health status	-	-	-	2 levels
Place of birth	-	-	-	born in the USA
Religious affiliation	-	-	-	-
Political affiliation	-	-	-	-
Parental status	-	-	-	-

Results (additional information)

Item by item comparisons of genetic knowledge:

For a description of the number of correct responses to the individual genetic knowledge items in the current paper and the source papers, see Table S2. Across the 30 items, the percentage of correct answers in the current sample ranged from 19% to 98%. On average, participants performed better than chance on all items with the exception of the two items regarding genetics and race.

On the item level, chi-squared tests of independence were conducted to test for differences in the percentage of correct responses between the current paper and the source papers. Some items appeared in more than one source paper leading to 36 comparisons. The criterion for significance was adjusted to account for the number of statistical tests simultaneously performed on the data. Bonferroni adjusted p-values were calculated such that the critical p-value $(\alpha=.05)$ was divided by the number of comparisons (36) to attain adjusted p-value of .0013 . Of these comparisons, 26 were significant, in each, the current sample had a greater percentage of correct responses (p's $<.001$).

Table S2. Number and percentage of respondents correctly answering genetic knowledge. Questions

	Question	Answer	Correct	Source Paper	Correct	Between papers test
(subcategory or genetic			respondents in		Respondents	of frequency of
knowledge)			the current		from previous	correct responses
			study		studies	
			n (\%)		\%	
1.	The onset of certain	Correct	648 (90\%)	Jallinoja and	1070 (88\%)	$\chi^{2}(1, \mathrm{~N}=1936)=$
	diseases is due to genes,			Aro (1999)		$1.82, \mathrm{p}=.18$
	environment and lifestyle					
	(disease)					
2.	A gene is a disease	Not	698 (97\%)	Jallinoja and	1058 (87\%)	$\chi^{2}(1, \mathrm{~N}=1936)=$
	(disease)	Correct		Aro (1999)		53.0**
3.	One can see a gene with the	Not	706 (98\%)	Jallinoja and	1058 (87\%)	$\chi^{2}(1, \mathrm{~N}=1936)=$
	naked eye	Correct		Aro (1999)		68.2**
	(physiology/biology)					
4.	Healthy parents can have a	Correct	691 (96\%)	Jallinoja and	1034 (85\%)	$\chi^{2}(1, \mathrm{~N}=1936)=$
	child with a hereditary			Aro (1999);		55.7**
	disease			Molster et al.		$\chi^{2}(1, \mathrm{~N}=1729)=$
	(disease, family)			(2009)*	918 (91\%)	16.2**

	Question	Answer	Correct	Source Paper	Correct	Between papers test
(subcategory or genetic			respondents in		Respondents	of frequency of
knowledge)			the current		from previous	correct responses
			study		studies	
			n (\%)		\%	
	A gene is a cell	Not	403 (56\%)	Jallinoja and	620 (51\%)	$\chi^{2}(1, \mathrm{~N}=1936)=$
	(physiology/biology)	Correct		Aro (1999)		$4.51, \mathrm{p}=.03$
	A gene is a part of a	Correct	533 (74\%)	Jallinoja and	547 (45\%)	$\chi^{2}(1, \mathrm{~N}=1936)=$
	chromosome			Aro (1999);		154.7**
	(physiology/biology)			Molster et al., (2009)	525 (52\%)	$\begin{aligned} & \chi^{2}(1, \mathrm{~N}=1729)= \\ & 85.6^{* *} \end{aligned}$
12.	Genes are bigger than	Not	518 (72\%)	Jallinoja and	499 (41\%)	$\chi^{2}(1, \mathrm{~N}=1936)=$
	chromosomes	Correct		Aro (1999)		173.3**
	(physiology/biology)					
13.	It has been estimated that a	Correct	475 (66\%)	Jallinoja and	219 (18\%)	$\chi^{2}(1, \mathrm{~N}=1936)=$
	person has about 20,000-			Aro (1999)		452.4**
	25,000 genes*					
	(physiology/biology)					
14.	Your blood can uniquely	Correct	634 (88\%)	Molster et al.	918 (91\%)	$\chi^{2}(1, \mathrm{~N}=1729)=$
	identify you because it			(2009)		$3.91, \mathrm{p}=.048$
	contains your DNA					

| Question | Answer | Correct | Source Paper | Correct |
| :---: | :---: | :---: | :---: | :---: | Between papers test

(physiology/biology)
15. If close relatives have
diabetes/heart disease, you
are more likely to develop
these
(disease, family)
16. If a person is the carrier of a

Not 641 (89\%)
Molster et al.
$807(80 \%) \quad \chi^{2}(1, \mathrm{~N}=1729)=$ (2009); Ashida
et al. (2011)*
562 (76\%)
$\chi^{2}(1, \mathrm{~N}=1691)=$
195.4**
17. Having increased genetic
risk means you get that

Not	$576(80 \%)$	Molster et
Correct		(2009)

disease regardless of what
you do
(family)
18. Living a healthy lifestyle
will not make any
Correct
$475(66 \%) \quad$ Molster et al. $\quad 686(68 \%) \quad \chi^{2}(1, \mathrm{~N}=1729)=$ (2009);
$.77, \mathrm{p}=.38$

	Question	Answer	Correct	Source Paper	Correct	Between papers test
(subcategory or genetic			respondents in		Respondents	of frequency of
knowledge)			the current		from previous	correct responses
			study		studies	
			n (\%)		\%	
	increased genetic risk for a			Ashida et al.		$\chi^{2}(1, \mathrm{~N}=1691)=$
	disease			(2011)*		340.8**
(disease)						
19.	Your blood contains a full	Correct	518 (72\%)	Molster et al.	686 (68\%)	$\chi^{2}(1, \mathrm{~N}=1729)=$
	copy of all your genes			(2009)		$3.11, \mathrm{p}=.078$
	(physiology/biology)					
20.	It is the father's	Correct	511 (71\%)	Molster et al.	626 (62\%)	$\chi^{2}(1, \mathrm{~N}=1729)=$
	chromosomes that decide if			(2009)		14.9 **
	a baby is a boy or a girl					
	(family)					
21.	Half your genes come from	Correct	554 (77\%)	Molster et al.	555 (55\%)	$\chi^{2}(1, \mathrm{~N}=1729)=$
	your mother and half from			(2009)		87.9**
	your father					
	(family)					
22.	Once a genetic marker for a	Not	403 (56\%)	Ashida et al.	200 (29\%)	$\chi^{2}(1, \mathrm{~N}=1691)=$
	health condition is found in	Correct		(2011)		225.5**
	a person, the condition can					
	be prevented or cured					
	(disease)					

	Question	Answer	Correct	Source Paper	Correct	Between papers test
(subcategory or genetic			respondents in		Respondents	of frequency of
knowledge)			the current		from previous	correct responses
			study		studies	
			n (\%)		\%	
23.	Only mothers can pass on	Not	677 (94\%)	Ashida et al.	814 (88\%)	$\chi^{2}(1, \mathrm{~N}=1691)=$
	genetic conditions	Correct		(2011)		41.2**
(family)						
24.	People who have a genetic	Not	677 (94\%)	Ashida et al.	730 (86\%)	$\chi^{2}(1, \mathrm{~N}=1691)=$
	marker for a disease are	Correct		(2011)		105.1**
	unhealthy					
	(disease)					
25.	On average, a person has	Correct	533 (74\%)	Christensen et	960 (80\%)	$\chi^{2}(1, \mathrm{~N}=1920)=$
	half their genes in common			al. (2010)		$9.28, \mathrm{p}=.002$
	with their siblings					
	(family)					
26.	Our genes tell us which	Not	137 (19\%)	Christensen et	300 (25\%)	$\chi^{2}(1, \mathrm{~N}=1920)=$
	race we belong to	Correct		al. (2010)		9.13, $\mathrm{p}=.003$
	(social group)					
27.	Two people from the same	Not	259 (36\%)	Christensen et	516 (43\%)	$\chi^{2}(1, \mathrm{~N}=1920)=$
	race will always be more	Correct		al. (2010)		9.23, $\mathrm{p}=.002$
	genetically similar to each					
	other than two people from					
	different races					
	(social group)					

Note. *Indicates the wording of the item was modified from the source paper. **Significant at $\mathrm{p}<.001$, p -values are otherwise stated within the table.

References

Ashida S, Goodman M, Pandya C, Koehly LM, Lachance C, Stafford J, et al.: Age differences in genetic knowledge, health literacy and causal beliefs for health conditions. Public Health Genomics 2011;14:307-316.

Christensen KD, Jayaratne TE, Roberts JS, Kardia SLR, Petty EM: Understandings of basic genetics in the united states: results from a national survey of black and white men and women. Public Health Genomics 2010;13:467-476.

Jallinoja P, Aro AR: Knowledge about genes and heredity among Finns. New Genet Soc 1999;18:101-110.

Molster C, Charles T, Samanek A, O'Leary P: Australian study on public knowledge of human genetics and health. Public Health Genomics 2009;12:84-91.

