This supplementary material consists of four parts. The first part includes chi-squared test results for goodness-of-fit, hypothesizing that the cell counts are equal in symptom presence between pre- and post-test conditions. The second part includes the R-codes used to draw a difference and a sum 2-D maps and then to estimate visually inspected associations with correlations to enhance interpretation. The R-codes also include the contingency table used for the present study and a researcher may replicate the 2-D maps and correlational results. The Third part is designed to explain how to identify sum and difference dimensions from the matched CA results; unlike other CA approaches, matched CA uniquely estimate sum and difference dimensions. The dimensional coordinates are summarized in Table 1. The fourth part includes the correlational results and each (row and column) category's contribution in a difference 2-D map; these results are summarized in Table 3.

Part 1: Conduct Chi-Squared Tests for Goodness-Of-Fit for Pre- and Post-Treatment Conditions

As shown in Table 1, none of the chi-squared test results for the psychiatric symptom indicators was favorable for the post-treatment condition. These chi-squared test results were consistent with the matched CA results and 12 age groups were positively related with all psychiatric symptoms, except *De* (depression not otherwise specified). There were several significant results found among age groups (which were "red" highlighted); however, the cell counts in the post-treatment condition were larger than the cell counts in the pre-treatment condition, indicating that the psychiatric symptoms were even worsened after treatment. The frequencies in *De* were consistently smaller among age groups in post-treatment than in pre-treatment; this result was consistent with the *De* symptom location (opposite to all other symptom indicators) in Figure 1 (a difference 2-D map) included in the main text.

TABLE 1

Chi-Squared Tests for Goodness-Of-Fit in Psychiatric Symptom Presence Indicators between Pre- and Post-Treatment Conditions

	postMa	preMa	p-value	postDy	preDy	p-value	postDe	preDe	p-value	postPo	prePo	p-value
a1	19	19	1	3	1*	0.3173	20	25	0.4561	3	2*	0.6547
a2	252	251	0.9644	23	24	0.8840	191	225	0.0955	51	42	0.3507
a3	437	441	0.8926	29	25	0.5862	294	343	0.0522	125	92	0.0251
a4	419	411	0.7813	108	101	0.6282	251	274	0.3155	110	91	0.1802
a5	377	363	0.6068	79	71	0.5136	201	215	0.4925	117	98	0.195
a6	233	228	0.8159	56	54	0.8488	125	139	0.3889	72	69	0.8005
a7	141	141	1	32	33	0.9013	90	95	0.7132	65	54	0.3133
a8	157	152	0.7761	27	23	0.5716	59	71	0.2926	60	48	0.2482
a9	108	106	0.8913	18	21	0.631	60	67	0.5345	52	44	0.4142
a10	308	298	0.6846	82	66	0.1884	139	169	0.0874	139	121	0.2643
a11	152	145	0.6846	33	29	0.6115	59	71	0.2926	76	58	0.1200
a12	36	35	0.9055	7	3	0.2059	10	11	0.8273	5	6	0.7630
	postOb	preOb	p-value	postGe	preGe	p-value	postAn	preAn	p-value	postSo	preSo	p-value
a1	14	9	0.2971	11	8	0.4913	10	15	0.3173	2	2*	1
a2	98	74	0.06725	109	89	0.1552	232	213	0.3678	31	14	0.0113
a3	186	143	0.0178	216	195	0.3003	337	332	0.8467	75	47	0.0112
a4	160	127	0.0514	227	171	0.0050	254	242	0.59	60	42	0.0747
a5	134	117	0.2833	207	160	0.0142	228	224	0.8508	56	39	0.0811
a6	73	66	0.5527	130	100	0.0479	134	138	0.8084	47	27	0.0201
a7	54	46	0.4237	70	54	0.1508	90	85	0.7055	16	8	0.1025
a8	51	40	0.2489	80	62	0.1309	72	76	0.7423	19	15	0.4927
a9	50	39	0.2436	46	37	0.3232	56	57	0.9251	12	5	0.0896
a10	89	76	0.3115	164	138	0.1346	145	152	0.6846	32	21	0.1308
a11	47	40	0.453	71	54	0.1284	77	75	0.8711	19	16	0.6121

0.1088 0.715 0.8415 10 4 16 14 12 13 4 2* 0.4142 a12 Note. * = chi-squared approximation may be incorrect because of insufficient cell counts. Ma = presence of major depressive disorder; Dy = dysthymia; De = depression not otherwise specified; Po = post traumatic stress disorder; Ob = obsessive compulsive disorder; Ge = generalized anxiety disorder; An = anxiety disorder not otherwise specified; and So = social phobia. a1 = ages 12-13; a2 = ages 14-15; a3 = ages 16-17; a4 = ages 18-19; a5 = ages 20-21; a6 = ages 22-23; a7 = ages 24-25; a8 = ages 26-27; a9 = ages 28-29; a10 = ages 30-39; a11 = ages 40-49; and a12 = ages 50-68.

Part 2: The R Code for Drawing a Difference 2-D Map and Computing Correlations

install.packages('ca')

library(ca)

Create concatenated crosstabulation for matched CA
Md2 = Md at posttreatment; Md = Md at pretreatment/baseline
See the note in Table 1 for the symptom full names
a1 = age 1 at posttreatment; g1 = age 1 at pretreatment
a1/g1=ages 12-13; a2/g2=ages 14-15; a3/g3=ages 16-17; a4/g4=ages 18=19;
a5/g5=ages # 20-21; a6/g6=ages 22-23; a7/g7= ages 24-25; a8/g8=ages 26-27;
a9/g9 ages=28-29; a10/g10 ages=30-39; a11/g11 ages=40-49; a12/g12 ages=50-68

##read.data

tmp <- read		text		Ma2	Dy2	De2	Po2	Ob2	Ge2	An2	So2	Ma	Dy	
De	Po	g1	0b 19	Ge 3	An 20	So 3	14	11	10	2	19	1	25	2
9	8	q2	15 252	2 23	191	51	98	109	232	31	251	24	225	
42	74	۔ ۲۵	89 437	213 29	14 294	125	186	216	337	75	441	25	343	
92	143	-	195	332 108	47 251									
91	127	-	419 171	242	42	110	160	227	254	60	411	101	274	
98	117		377 160	79 224	201 39	117	134	207	228	56	363	71	215	
69	66	g6	233 100	56 138	125 27	72	73	130	134	47	228	54	139	
54	46	g7	141 54	32 85	90 8	65	54	70	90	16	141	33	95	
48	40	g8	157 62	27 76	59 15	60	51	80	72	19	152	23	71	
40	39	g9	108 37	18 57	60	52	50	46	56	12	106	21	67	
		g10	308	82	5 139	139	89	164	145	32	298	66	169	
121	76	g11	138 152	152 33	21 59	76	47	71	77	19	145	29	71	
58	40	g12	54 36	75 7	16 10	5	10	16	12	4	35	3	11	6
4	14	a1	13 19	2 1	25	2	9	8	15	2	19	3	20	3
14	11		10 251	2 24	225	42	74	89	213	14	252	23	191	-
51	98		109	232	31									
125	186		441 216	25 337	343 75	92	143	195	332	47	437	29	294	
110	160	a4	411 227	101 254	274 60	91	127	171	242	42	419	108	251	
117	134	a5	363 207	71 228	215 56	98	117	160	224	39	377	79	201	
72	73	аб	228 130	54 134	139 47	69	66	100	138	27	233	56	125	
65	54	a7	141 70	33 90	95 16	54	46	54	85	8	141	32	90	
60		a8	152	23 72	71	48	40	62	76	15	157	27	59	
	51	a9	80 106	21	19 67	44	39	37	57	5	108	18	60	
52	50	a10	46 298	56 66	12 169	121	76	138	152	21	308	82	139	
139	89	a11	164 145	145 29	32 71	58	40	54	75	16	152	33	59	
76	47		71	77	19									

a12 35 3 11 6 4 14 13 2 36 7 10 5 10 16 12 4", header=TRUE)

myca <- ca(tmp, 15)
summary(myca)</pre>

The biplot for two sum-dimensions (1 & 3)

We admit that although "rowgreen" (which multiplies the columns standard coordinates by the # square root of the masses) is a better option statistically, the rowgreen-biplot was # not legible with our current data set, especially the age groups were too closely bundled. # The visual inspection of associations between age groups and psychiatric symptom-presence # indicators was critical in the present study. Therefore, to enhance legibility, we had to # rely on a "rowgab" biplot (rows in principal coordinates and columns in standard coordinates # times masses).

plot(myca, mass=TRUE, map="rowgab", arrows=c(FALSE,TRUE), dim=c(1,3))

The sum 2-D map which is quite different from the difference 2-D plot (Figure 1) that was

- # included in the main text. The correlational results estimated from the sum 2-D map
- # are not correct because the results are not based on optimally scaled differences

between baseline and posttreatment.

Note that we edited the sum 2-D map in Adobe because the "rowgab" option includes redundant

information (e.g., age groups for Pre and Post and the psychiatric symptoms for Pre and Post), # so in the sum 2-D map we removed the redundant information. We did the same thing for Figure 1

included in the main text (Letter).

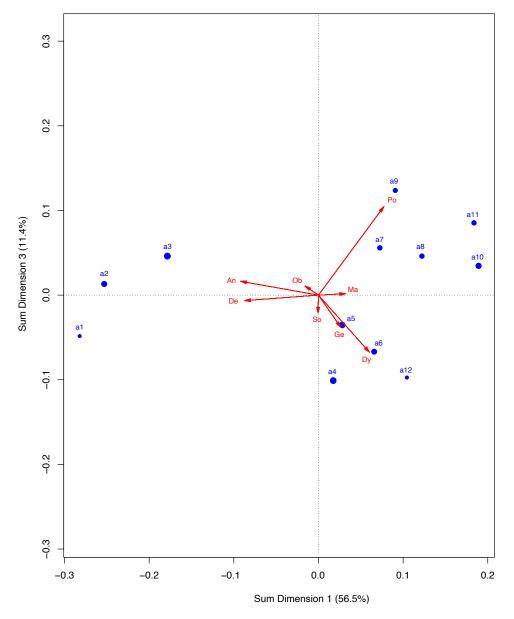


Figure 2. The 2-D Plot Constructed with Sum Dimensions 1 and 3.

Ma = presence of major depressive disorder; Dy = dysthymia; De = depression not otherwise specified; Po = post traumatic stress disorder; Ob = obsessive compulsive disorder; Ge = generalized anxiety disorder; An = anxiety disorder not otherwise specified; and So = social phobia. a1 = ages 12-13; a2 = ages 14-15; a3 = ages 16-17; a4 = ages 18-19; a5 = ages 20-21; a6 = ages 22-23; a7 = ages 24-25; a8 = ages 26-27; a9 = ages 28-29; a10 = ages 30-39; a11 = ages 40-49; and a12 = ages 50-68.

The biplot for two difference-dimensions (2 & 7) was included in the letter

Use a visualization "rowgab" option on page 266 in Greenacre, M. J. (2017). Correspondence Analysis in # Practice. 3nd ed. Boca Raton, FL: Chapman & Hall/CRC.

plot(ca(tmp), mass=TRUE, map="rowgab", arrows=c(FALSE,TRUE), dim=c(2,7))

Estimate Category Correlations

choose (1, 3) for sum-dimensional correlations ## choose (2, 7) for difference-dimensional correlations, which was our main interest

#plane <- c(1, 3) # for a sum 2-D map</pre>

```
plane <- c(2, 7) # for a difference 2-D map
```

```
myca$rowcoord <- myca$rowcoord %*% diag(myca$sv)
row.scores=myca$rowcoord
#compute row scores for the data
#note that we can use row scores or row weights tmp.svd$u
row.corrs=matrix(nrow=nrow(tmp),ncol=nrow(tmp))
#create a matrix to hold the row correlations
rownames(row.corrs)=rownames(tmp) #add the labels for columns
colnames(row.corrs)=rownames(tmp) #add the labels for columns
#### ROW category correlations ####
#rads to degs 57.2957795 degrees
#remember atan2 is (y, x)
convert=57.29577958
for(i in 1:nrow(row.corrs)) { #for each row in the data
 row1=atan2(row.scores[i,plane[1]],
            row.scores[i,plane[2]])*convert
  #get the arctan on plane
  for(j in 1:ncol(row.corrs)){ #for row j
    row2=atan2(row.scores[j,plane[1]],
               row.scores[j,plane[2]])*convert
    #get the arctan on designated plane
    row.corrs[i,j]=cos((row1-row2)/convert)
    #subtract the two dimensions to get the angle between them,
    #convert it into degrees from radians, get the cosine of the angle
    #(which is the correlation between row i and j)
  }
round(row.corrs,2)
#### COLUMN category correlations #####
column.scores=myca$colcoord
#to get correlations between columns:
column.corrs=matrix(nrow=ncol(tmp),
                    ncol=ncol(tmp)) #create a matrix to hold the row correlations
rownames(column.corrs)=colnames(tmp) #add the labels for columns
colnames(column.corrs)=colnames(tmp) #add the labels for columns
for(i in 1:nrow(column.corrs)) { #for each var in the data
  column1=atan2(column.scores[i,plane[1]],
                column.scores[i,plane[2]])*convert
  #get the arctan on designated plane
  for(j in 1:ncol(column.corrs)) { #for var j
    column2=atan2(column.scores[j,plane[1]],
                  column.scores[j,plane[2]])*convert
    #get the arctan on plane
    column.corrs[i,j]=cos((column1-column2)/convert)
    #subtract the plane to get the angle between them,
    #convert it into degrees from radians, get the cosine of the angle
    #(which is the correlation between row i and j)
  }
round(column.corrs,2)
##### ROW & COLUMN category correlations ####
##### Using Greenacre p 98 to calculate cos(theta)
row.col.corrs.rsc=matrix(nrow=nrow(tmp),
                     ncol=ncol(tmp))
colnames(row.col.corrs.rsc)=colnames(tmp) #add the labels for columns
rownames(row.col.corrs.rsc)=rownames(tmp) #add the labels for columns
for(i in 1:nrow(tmp)){ #for each var in the data
  # length of row vector in plane
```

```
row=sqrt(myca$rowcoord[i,plane[1]]^2+myca$rowcoord[i,plane[2]]^2)
for(j in 1:ncol(tmp)){ #for var j
    #length of column vector in plane
    column=sqrt(myca$colcoord[j,plane[1]]^2+myca$colcoord[j,plane[2]]^2)
    # cross product of row and column vectors in plane
    rtc=t(myca$rowcoord[i,c(plane[1],plane[2])])%*%myca$colcoord[j,c(plane[1],plane[2])]
    #costheta is cross product divided by the product of the lengths of row and colum vectors
    costheta=rtc/(row*column)
    # Save the value in the cor matrix
    row.col.corrs.rsc[i,j]=costheta
    }
}
round(row.col.corrs.rsc,2)
```

Part 3: How to Identify Sum and Difference Dimensions?

In a concatenated matrix, the rows and columns are repeated twice, and matched CA estimates two sets of identical row and column coordinates up to possible sign changes. In the case of a 24×16 table, if the first 12 coordinate values in the rows are identical to the last 12 coordinate values in a given dimension, the dimension corresponds to the sum A (aftertreatment) + B (baseline) (equivalently between-age of treatment) (see Dim1 and Dim3 in Table 1). On the other hand, if the first 12 row coordinate values are opposite to the last 12 values in a given dimension, the dimension corresponds to the difference, A – B (equivalently within-age of treatment differences) (see Dim2 and Dim7 in Table 2).

TABLE 2

Standard Coordinates from Matched CA of a 24 x 16 Concatenated Matr	тiх

Symptom	Dim1	Dim3	•	Dim11	Dim2	Dim7	Dim15
Ma	0.232143	0.011702		-0.770616	-0.120065	0.336590	-1.844440
Dy	2.417132	-2.712085		0.252162	-0.644508	2.806287	0.674514
So	-0.037066	-1.319237		-2.015169	-2.918518	-2.987181	-0.139790
Ma	0.232143	0.011702		-0.770616	0.120065	-0.336590	1.844440
Dy	2.417132	-2.712085		0.252162	0.644508	-2.806287	-0.674514
So	-0.037066	-1.319237	•	-2.015169	2.918518	2.987181	0.139790
	Sum	Sum		Sum	Difference	Difference	Difference
	56.5%	11.4%	•	0.4%	15.7%	1%	0%
Total				81%			19%

Note. The coordinates of the first two differences were boxed. Ma = presence of major depressive disorder; Dy = dysthymia; De = depression not otherwise specified; Po = post traumatic stress disorder; Ob = obsessive compulsive disorder; Ge = generalized anxiety disorder; An = anxiety disorder not otherwise specified; and So = social phobia.

Although matched CA allows us to estimate sum and difference dimensions separately, our main interest in the study is to examine the difference dimensions; specifically, we want to study positions of psychiatric symptom points projected onto a 2-D map where the horizontal axis is made with the first difference dimension and the vertical axis with the second difference dimension.

Interpreting symptom points in a difference 2-D map. A 2-D map includes configurations of the After – Before differences in both age groups and symptoms. The differences signify the reminiscent comorbidity appearing in the age groups and the psychiatric symptoms. These differences are displayed as age group points and symptom points in the 2-D map (see Figure 1 in the letter). The age group points indicate the degree of improvement or deterioration aggregated over all psychiatric symptom effects or comorbidity, whereas the symptom points represent the degree of improvement or deterioration aggregated over all age groups. In either way, if the points are close to the origin of (0, 0), this implies no change in comorbidity after treatment; if the points are at the left (negative) side of the origin, this implies improvement in comorbidity after treatment; and if the points are at the right (positive) side of the origin, this implies deterioration in comorbidity after treatment.

Part 4: Interpretation of Correlations

Using the R code included here, we estimated correlations between row categories; between column categories; and between row and column categories. However, since we were interested in the correlations between row and column categories (the 3^{rd} Part in the R code), we included only row-column category correlations in Table 2. In the table, we boxed only the correlations (equal to or larger than 0.6) cross-tabulated between age groups whose contributions were above the average (8.3% = 100%/12) and the psychiatric symptoms whose contributions were above the average (12.5% = 100%/8). The contributions of age groups and symptom indicators were calculated with the information provided in the "ctr" column in the results from the R code, "summary(myca)" included in Part 1.

According to the boxed correlations, ages 14-15 (12%), ages 16-17 (18%), ages 18-19 (15%), ages 20-21 (11%), ages 22-23 (9%), and ages 30-39 (10%) were highly related with obsessive compulsive disorder (18%), generalized anxiety disorder (25%), and social phobia (27%), implying that these age groups would be more venerable to these three symptoms than any other psychiatric symptoms.

TABLE 3

The Symptom Contributions (%) in a Difference 2-D Map and Correlations between Age Groups and Psychiatric Symptoms in the Map.

Cont. %	Ma (1%)	Dy (4%)	De (12%)	Po (12%)	Ob (18%)	Ge (25%)	An (1%)	So (27%)
Ages 12-13 (2%)	0.81	0.74	-0.75	1	0.75	1	-0.48	0.17
Ages 14-15 (12%)	0	-0.11	-0.97	0.65	0.97	0.63	0.43	0.9
Ages 16-17 (18%)	0.16	0.04	-1	0.76	1	0.75	0.28	0.82
Ages 18-19 (15%)	0.38	0.27	-0.99	0.89	0.99	0.88	0.05	0.66
Ages 20-21 (11%)	0.45	0.34	-0.97	0.92	0.97	0.91	-0.02	0.61
Ages 22-23 (9%)	0.16	0.05	-1	0.76	1	0.75	0.28	0.82
Ages 24-25 (5%)	0.19	0.07	-1	0.78	1	0.77	0.25	0.8
Ages 26-27 (6%)	0.6	0.51	-0.91	0.98	0.91	0.97	-0.21	0.45
Ages 28-29 (5%)	0.08	-0.03	-0.99	0.71	0.99	0.69	0.35	0.86
Ages 30-39 (10%)	0.63	0.54	-0.9	0.98	0.9	0.98	-0.24	0.42
Ages 40-49 (6%)	0.63	0.53	-0.9	0.98	0.9	0.98	-0.24	0.42
Ages 50-68 (2%)	0.61	0.52	-0.91	0.98	0.91	0.97	-0.22	0.44

Note. We bolded Age Groups and Symptoms whose contributions were equal to or larger than the average contribution in the difference 2-D map and boxed around correlations between those age groups and symptoms (but we included the correlation larger than +0.6 for further investigation). Ma = presence of major depressive disorder; Dy = dysthymia; De = depression not otherwise specified; Po = post traumatic stress disorder; Ob = obsessive compulsive disorder; Ge = generalized anxiety disorder; An = anxiety disorder not otherwise specified; and So = social phobia.