Supplementary Materials

Fig. S1 Time course of cit-Fb-mediated CXCL10 gene and protein expression in rheumatoid synovial cells(RSCs). RSCs were cultured with cit-Fb (20 μ g/mL) time-dependently(0 h, 1.5 h, 6 h, 12 h, 24 h). The treated cells were subjected to qRT-PCR analysis for *CXCL10* . Data are normalized to *ACTB* and presented as mean \pm SEM (n = 3). RSCs were cultured with cit-Fb (20 μ g/mL) time-dependently(0 h, 48 h, 72 h) , and CXCL10 levels in the cultured supernatants were determined by ELISA. Data are presented as mean \pm SEM (n = 3).

Fig. S2 Induction of CXCL10 by cit-Fb via IFN- β in rheumatoid synovial cells(RSCs). RSCs were pre-treated with IFN- β -specific siRNA or non-target (nt) siRNA for 48 h, and stimulated with cit-Fb (20 μ g/mL) for 5 h. The treated cells were subjected to qRT-PCR analysis for *IFNB* or *CXCL10* . Data are normalized to *ACTB* and presented as mean \pm SEM (n = 3).

Fig. S3

Fig. S3 Time dependent effect of cit-Fb and/or polymyxin-B(PMB) in rheumatoid synovial cells(RSCs). RSCs were cultured with cit-Fb (20 μ g/mL) and/or PMB (10 μ g/mL) for 12 h, 24h, and 36 h. The treated cells were subjected to qRT-PCR analysis for *CXCL10* . Data are normalized to *ACTB* and presented as mean \pm SEM (n = 3).

Supplementary Table 1. Quantitative real-time PCR primer sequences for genes used in this study.

	-CTAAACAGATGAAGTGCTCC	
II 1 R N 5'-		5'-GGTCATTCTCCTGGAAGG
TEITHV 5	-ATACTTGCAAGGACCAAATG	5'-TGTTAACTGCCTCCAGC
TNFA 5'-	-AGGCAGTCAGATCATCTTC	5'-TTATCTCTCAGCTCCACG
<i>IL6</i> 5'-	-GCAGAAAAAGGCAAAGAATC	5'-CTACATTTGCCGAAGAGC
<i>IL8</i> 5'-	-GTTTTTGAAGAGGGCTGAG	5'-TTTGCTTGAAGTTTCACTGG
CXCL1 5'-	-ATGCTGAACAGTGACAAATC	5'-TCTTCTGTTCCTATAAGGGC
CXCL5 5'-	-ATTTGTCTTGATCCAGAAGC	5'-TCAGTTTTCCTTGTTTCCAC
CXCL9 5'-	-AGGTCAGCCAAAAGAAAAAG	5'-TGAAGTGGTCTCTTATGTAGTC
CXCL10 5'-	-AAAGCAGTTAGCAAGGAAAG	5'-TCATTGGTCACCTTTTAGTG
CXCL11 5'-	-CTACAGTTGTTCAAGGCTTC	5'-CACTTTCACTGCTTTTACCC
CCL2 5'-	-AGACTAACCCAGAAACATCC	5'-ATTGATTGCATCTGGCTG
CCL3 5'-	-TCTCTGCAACCAGTTCTC	5'-AATTCTGTGGAATCTGCC
CCL4 5'-	-GCCGTGTTATTGTATTAGGT	5'-TATGAAAACACACAGAATCAAAT
CCL5 5'-	-AAGTCTCTAGGTTCTGAGC	5'-TTTTATGGTTGCATTGAGAAC
CCL11 5'-	-GATCTTCAAGACCAAACTGG	5'-CAGAATGCATTGTAAGAAGGG
CCL17 5'-	-TTCCCCTTAGAAAGCTGAAG	5'-CTTCACTCTTGTTGTTGG
CCL20 5'-	-TATATTGTGCGTCTCCTCAG	5'-GCTATGTCCAATTCCATTCC
COX2 5'-	-AAGCAGGCTAATACTGATAGG	5'-TGTTGAAAAGTAGTTCTGGG
IFNA 5'-	-ATCTGGTCCAACATGAAAAC	5'-GGGTGAGAGTCTTTGAAATG
IFNB 5'-	-ATTCTAACTGCAACCTTTCG	5'-GTTGTAGCTCATGGAAAGAG
IFNG 5'-	-GGTAACTGACTTGAATGTCC	5'-TTTTCGCTTCCCTGTTTTAG
TLR4 5'-	-GATTTATCCAGGTGTGAAATCC	5'-TATTAAGGTAGAGAGGTGGC
ACTB 5'-	-GACGACATGGAGAAAATCTG	5'-ATGATCTGGGTCATCTTCTC