Supplementary Materials

Fig. S1

Fig. S1
Time course of cit-Fb-mediated CXCL10 gene and protein expression in rheumatoid synovial cells(RSCs). RSCs were cultured with cit-Fb ($20 \mu \mathrm{~g} / \mathrm{mL}$) time-dependently $(0 \mathrm{~h}, 1.5 \mathrm{~h}, 6 \mathrm{~h}, 12 \mathrm{~h}, 24 \mathrm{~h})$. The treated cells were subjected to qRT-PCR analysis for CXCL10. Data are normalized to ACTB and presented as mean \pm SEM ($n=3$).

RSCs were cultured with cit-Fb ($20 \mu \mathrm{~g} / \mathrm{mL}$) time-dependently $(0 \mathrm{~h}, 48 \mathrm{~h}, 72 \mathrm{~h})$, and CXCL10 levels in the cultured supernatants were determined by ELISA. Data are presented as mean \pm SEM $(n=3)$.

Fig. S2

Fig. S2
Induction of CXCL10 by cit-Fb via IFN- β in rheumatoid synovial cells(RSCs). RSCs were pre-treated with IFN- β-specific siRNA or non-target (nt) siRNA for 48 h , and stimulated with cit-Fb ($20 \mu \mathrm{~g} / \mathrm{mL}$) for 5 h . The treated cells were subjected to qRT-PCR analysis for IFNB or CXCL10. Data are normalized to ACTB and presented as mean \pm SEM ($\mathrm{n}=$ $3)$.

Fig. S3

Fig. S3
Time dependent effect of cit-Fb and/or polymyxin-B(PMB) in rheumatoid synovial cells(RSCs). RSCs were cultured with cit-Fb $(20 \mu \mathrm{~g} / \mathrm{mL})$ and/or PMB $(10 \mu \mathrm{~g} / \mathrm{mL})$ for $12 \mathrm{~h}, 24 \mathrm{~h}$, and 36 h . The treated cells were subjected to qRT-PCR analysis for CXCL10. Data are normalized to ACTB and presented as mean \pm SEM $(\mathrm{n}=3)$.

Supplementary Table 1. Quantitative real-time PCR primer sequences for genes used in this study.

Gene	Sense	Antisense
IL1B	5'-CTAAACAGATGAAGTGCTCC	5'-GGTCATTCTCCTGGAAGG
IL1RN	5'-ATACTTGCAAGGACCAAATG	5'-TGTTAACTGCCTCCAGC
TNFA	5'-AGGCAGTCAGATCATCTTC	5'-TTATCTCTCAGCTCCACG
IL6	5'-GCAGAAAAAGGCAAAGAATC	5'-CTACATTTGCCGAAGAGC
IL8	5'-GTTTTTGAAGAGGGCTGAG	5'-TTTGCTTGAAGTTTCACTGG
CXCL1	5'-ATGCTGAACAGTGACAAATC	5'-TCTTCTGTTCCTATAAGGGC
CXCL5	5'-ATTTGTCTTGATCCAGAAGC	5'-TCAGTTTTCCTTGTTTCCAC
CXCL9	5'-AGGTCAGCCAAAAGAAAAAG	5'-TGAAGTGGTCTCTTATGTAGTC
CXCL10	5'-AAAGCAGTTAGCAAGGAAAG	5'-TCATTGGTCACCTTTTAGTG
CXCL11	5'-CTACAGTTGTTCAAGGCTTC	5'-CACTTTCACTGCTTTTACCC
CCL2	5'-AGACTAACCCAGAAACATCC	5'-ATTGATTGCATCTGGCTG
CCL3	5'-TCTCTGCAACCAGTTCTC	5'-AATTCTGTGGAATCTGCC
CCL4	5'-GCCGTGTTATTGTATTAGGT	5'-TATGAAAACACACAGAATCAAAT
CCL5	5'-AAGTCTCTAGGTTCTGAGC	5'-TTTTATGGTTGCATTGAGAAC
CCL11	5'-GATCTTCAAGACCAAACTGG	5'-CAGAATGCATTGTAAGAAGGG
CCL17	5'-TTCCCCTTAGAAAGCTGAAG	5'-CTTCACTCTCTTGTTGTTGG
CCL20	5'-TATATTGTGCGTCTCCTCAG	5'-GCTATGTCCAATTCCATTCC
COX2	5'-AAGCAGGCTAATACTGATAGG	5'-TGTTGAAAAGTAGTTCTGGG
IFNA	5'-ATCTGGTCCAACATGAAAAC	5'-GGGTGAGAGTCTTTGAAATG
IFNB	5'-ATTCTAACTGCAACCTTTCG	5'-GTTGTAGCTCATGGAAAGAG
IFNG	5'-GGTAACTGACTTGAATGTCC	5'-TTTTCGCTTCCCTGTTTTAG
TLR4	5'-GATTTATCCAGGTGTGAAATCC	5'-TATTAAGGTAGAGAGGTGGC
ACTB	5'-GACGACATGGAGAAAATCTG	5'-ATGATCTGGGTCATCTTCTC

