Supplementary Material 2: Curve Fitting using Excel-Solver®

The equation, $L_1(t) = L_1(\infty) \times (1 - \text{Exp}(-kt))$ can be rearranged to give $L_1(\infty) = L_1(t) / (1 - \text{Exp}(-kt))$. As the saturated count, $L_1(\infty)$, should be the same value for any $(t, L_1(t))$, the next equation would be $L_1(\infty) = L_1(t_1) / (1 - \exp(-kt_1)) = L_1(t_2) / (1 - \exp(-kt_2)) = L_1(t_3) / (1 - \exp(-kt_3))$, where $L_1(t_1)$, $L_1(t_2)$ and $L_1(t_3)$ are the observed values of radioactivity at time t_1 , t_2 and t_3 , respectively. We generated this relationship for L_1 (t) for t_{1-3} and for L_1 (∞) for t_{1-3} on an Excel sheet. For determining the k value that provides the best fit curve for $L_1(t) = L_1(\infty) \times (1 - \text{Exp}(-kt))$ at the observed radioactivity requires us to find k such that $L_1(\infty)$ for t_1 , $L_1(\infty)$ for t_2 and $L_1(\infty)$ for t_3 are all equal. Using this theoretical basis, we used a programme to find a k value that will yield minimum difference between the $L_1(\infty)$ that fulfils the curve passing the measured point (t_1, L_1) (t_1)) and the $L_1(\infty)$ that fulfils the curve passing the measured point $(t_2, L_1(t_2))$. As an identical operation should be established between $L_1(\infty)$ that fulfils the curve passing the measured points $(t_2, L_1(t_2))$ and $(t_3, L_1(t_3))$, and also between $L_1(\infty)$ that fulfils the curve passing the measured points $(t_3, L_1(t_3))$ and $(t_1, L_1(t_1))$, we practically developed a program that calculated the average of absolute differences between any two $L_1(\infty)$ first, and then searched for a k value that made this average minimum. These operations were performed using the Excel-Solver® (Generalised Reduced Gradient Method) by defining k as a changing variable, by setting the average of the absolute value of difference as the objective and by finding the minimum value for the objective.

