Online Data Supplement

Deep learning-based segmentation of airway morphology from endobronchial optical coherence tomography

Zi-Qing Zhou^a* Ph.D., Zu-Yuan Guo^a* M.D., Chang-Hao Zhong^a* M.D., Hui-Qi Qiu^a* M.D., Yu Chen^a Ph.D., Wan-Yuan Rao^a M.D., Xiao-Bo Chen^a M.D., Hong-Kai Wu^a Ph.D., Chun-Li Tang^a # M.D., Zhu-Quan Su^a # Ph.D., Shi-Yue Li^a # M.D.

* Drs. Zi-Qing Zhou, Zu-Yuan Guo, Chang-Hao Zhong and Hui-Qi Qiu are co-first authors.

^aState Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.

Short Title: Deep learning-based segmentation of EB-OCT image

Corresponding Author 1: Shi-Yue Li. Sate Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Address: 151 Yanjiang Road, Guangzhou, 510120, China. E-mail: lishiyue@188.com

Corresponding Author 2: Zhu-Quan Su. Sate Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Address: 151 Yanjiang Road, Guangzhou, 510120, China.

E-mail: py1011xiaoquan@163.com

Corresponding Author 3: Chun-Li Tang. Sate Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Address: 151 Yanjiang Road, Guangzhou, 510120, China. E-mail: tcl8182@163.com

Supplementary Table

Table S1. The mean dice similarity coefficient of OCT image segmentationsbetween CNN and observers.

mDSC (%)	Ai segmentation	Aw% segmentation
Between CNN and Observer 1	98.101±6.245	96.072±8.131
Between CNN and Observe 2	98.481±5.845	96.668±7.676
Between Observer 1 and Observer 2	97.693±6.819	95.816±9.121

Data in the blank are shown as: Mean±SD.

Abbreviation: mDSC: mean dice similarity coefficient; CNN: convolutional neural network, mDSC was calculated between ResUNet and observers for Ai segmentation, and between MultiResUNet and observers for Aw% segmentation.

Supplementary Figures

Figure S1. The Pearson correlations among the two observers and CNN segmentations for Ai and Aw. A-C. There was a significant correlation between ResUNet and observer 1 (r=0.999, P < 0.001), between between ResUNet and observer 2 (r=0.999, P < 0.001) and between two observers (r=0.999, P < 0.001), for Ai segmentation. D-F. A significant correlation was found between MultiResUNet and observer 1 (r=0.996, P < 0.001), between MultiResUNet and observer 2 (r=0.997, P < 0.001) and between two observers (r=0.995, P < 0.001), for Aw% segmentation. There was more variability between the two observers compared to the variability between the manual and automatic segmentations of Aw%.

Figure S2. Bland-Altman analysis for two observers and ResUNet segmentations for Ai. A-C. Bland-Altman analysis indicates a small bias between ResUNet and observer 1 (bias=-0.02mm², 95%CI=-0.12mm²-0.09mm²), between ResUNet and observer 2 (bias=0 95%CI=-0.09mm²-0.08mm²) and between two observers (bias=0.01mm² 95%CI=-0.11mm²-0.14mm²) for Ai segmentation from 3rd to 6th generations of bronchi. D-F. Bland-Altman analysis indicates a small bias between ResUNet and observer 1 (bias=-0.02mm² 95%CI=-0.09mm²-0.06mm²), between ResUNet and observer 1 (bias=-0.02mm² 95%CI=-0.09mm²-0.06mm²), between ResUNet and observer 2 (bias=-0.01mm² 95%CI=-0.09mm²-0.06mm²), between ResUNet and observer 2 (bias=-0.01mm² 95%CI=-0.10mm²-0.08mm²) and between two observers (bias=0.01mm² 95%CI=-0.10mm²-0.08mm²) for Ai segmentation from 7th to 9th generations of bronchi. Solid lines represent the bias and dotted lines represent the 95% confidence intervals.

Figure S3. Bland-Altman analysis for two observers and MultiResUNet segmentations for Aw%. A-C. Bland-Altman analysis indicates a small bias between MultiResUNet and observer 1 (bias=-0.01% 95%CI=-1.48%-1.45%), between MultiResUNet and observer 2 (bias=0.95%CI=-0.90%-0.91%) and between two observers (bias=0.02% 95%CI=-1.69%-1.72%) for Aw% segmentation from 3rd to 6th generations of bronchi. D-F. Bland-Altman analysis indicates a small bias between MultiResUNet and observer 1 (bias=0.12% 95%CI=-1.91%-2.14%), between MultiResUNet and observer 2 (bias=0.06% 95%CI=-1.86%-1.99%) and between two observers (bias=-0.06% 95%CI=-1.98%-1.87%) for Aw% segmentation from 7th to 9th generations of bronchi. Solid lines represent the bias and dotted lines represent the 95% confidence intervals.