Supplementary material on-line

Novel pathways in pathobiology of human abdominal aortic aneurysms
I Hinterseher, R Erdman, JR Elmore, E Stahl, MC Pahl, K Derr, A Golden, JH Lillvis, MC Cindric, K Jackson, WD Bowen, CM Schworer, MA Chernousov, DP Franklin, JL Gray, RP Garvin, Z Gatalica, DJ Carey, G Tromp, and H Kuivaniemi

This file contains 3 tables (Table S1, S2 and S3) and Fig. S1
Table S1. Human infrarenal abdominal aortic tissue samples used in the study

Case ID	Classifi cation	Sex	Age (y)	Cause of Death	Microarray	PCR Array	$\begin{gathered} \text { Western } \\ \text { Blot } \end{gathered}$	IHC
A1-F	AAA	F	82		$\sqrt{*}$			
A2-F	AAA	F	68		$\sqrt{*}$			
A3-F	AAA	F	64		$\sqrt{*}$			
A2-M	AAA	M	63		$\sqrt{*}$			
A3-M	AAA	M	67		$\sqrt{*}$			
A4-M	AAA	M	63		$\sqrt{*}$			
GHS020200	AAA	M	82		$\sqrt{ }$			
GHS020400	AAA	M	76		$\sqrt{ }$			
GHS200306	AAA	M	70		\checkmark			
GHS200308	AAA	M	74		$\sqrt{ }$			
WSU052	AAA	M	70					\checkmark
WSU075	AAA	M	67					$\sqrt{ }$
WSU068	AAA	M	72					\checkmark
GHS01	AAA	M	67			\checkmark		\checkmark
GHS02	AAA	F	63			\checkmark		
GHS05	AAA	M	64			$\sqrt{ }$		\checkmark
GHS07	AAA	F	65			\checkmark	\checkmark	
GHS11	AAA	F	61			$\sqrt{ }$		
GHS12	AAA	M	70			\checkmark		
GHS13	AAA	M	78			$\sqrt{ }$		
GHS14	AAA	M	75			\checkmark		
GHS15	AAA	M	66			$\sqrt{ }$		
GHS19	AAA	M	66			$\sqrt{ }$		
GHS32	AAA	C	64				\checkmark	
GHS48	AAA	C	65				\checkmark	
GHS68	AAA	C	61				$\sqrt{ }$	
GHS200210	AAA	M	60			\checkmark		
GHS200212	AAA	M	73			$\sqrt{ }$		
GHS200214	AAA	M	60			\checkmark		
GHS200219	AAA	M	67			$\sqrt{ }$		
GHS200305	AAA	M	64			$\sqrt{ }$		
C1-F	Control	F	74	Cancer	$\sqrt{*}$			
C2-F	Control	F	52	Cancer	$\sqrt{*}$			
C3-F	Control	F	84	Aortic arch dissection	$\sqrt{*}$			
C1-M	Control	M	65	Peritonitis	$\sqrt{*}$			
C2-M	Control	M	59	Cancer	$\sqrt{*}$			
C3-M	Control	M	52	Liver cirrhosis	$\sqrt{*}$			
C4-M	Control	M	73	Cancer	$\sqrt{*}$			
GHS200105	Control	M	21	Trauma	\checkmark			
GHS200401	Control	F	53	Cancer	\checkmark			
GHS024200	Control	M	53	NA	\checkmark			
NDRI56735	Control	F	54	Cancer	$\sqrt{ }$		\checkmark	
NDRI56724	Control	F	77	Natural		\checkmark		
NDRI57017	Control	F	78	Cardiovascular		$\sqrt{ }$	$\sqrt{ }$	

NDRI57054	Control	M	69	Cardiovascular	$\sqrt{ }$	$\sqrt{ }$	
NDRI57179	Control	F	57	Respiratory failure	$\sqrt{ }$		
NDRI57110	Control	M	69	Cardiovascular	$\sqrt{ }$		
NDRI66274	Control	M	61	Cardiovascular	$\sqrt{ }$		
NDRI66279	Control	M	64	Cancer	$\sqrt{ }$		
NDRI66324	Control	M	67	Cancer	$\sqrt{ }$		
NDRI66747	Control	M	57	Cardiovascular	$\sqrt{ }$		
NDRI66799	Control	M	67	Respiratory		$\sqrt{ }$	
ME-01-05	Control	M	53	NA	$\sqrt{ }$		
ME-02-05	Control	M	78	Cardiovascular	$\sqrt{ }$	$\sqrt{ }$	
ME-05-01	Control	F	69	Trauma	$\sqrt{ }$		
ME-05-03	Control	M	54	Cardiovascular			
ME-05-05	Control	F	59	Cardiovascular	$\sqrt{ }$		
ME-10-01	Control	F	88	Trauma	$\sqrt{ }$		
ME-10-03	Control	M	44	Overdose			

NA, Not available.
All donors were Caucasian.
Samples were stored in RNAlater (Ambion, Austin, TX), in phosphate-buffered formalin (and embedded in paraffin), or snap-frozen in liquid nitrogen.
*These samples were used in the previous microarray study [1].
For the microarray experiment [1], the summary statistics are:

- AAA group $(n=6$: mean age $=67.8+/-7.3$, Median $=65.5$, Male $:$ Female $=3: 3$
- Control group $(n=7)$: mean age $=65.6+/-12.1$, Median $=65$, Male $:$ Female $=4: 3$
- Comparison of ages in the study groups: $P=0.69$ (two-tailed t-test, unequal variance)

For the second microarray experiment reported in this study, the summary statistics are:

- \quad AAA group $(\mathrm{N}=4)$: mean age $=75+/-5.0$, Median $=74$, Male:Female $=4: 0$
- Control group $(\mathrm{N}=4)$: mean age $=45.3+/-16.2$, Median $=53$, Male:Female $=2: 2$
- Comparison of ages in the study groups: $\mathrm{p}=0.03$ (two-tailed t -test, unequal variance)

For the PCRArrays, the summary statistics are:

- AAA group $(n=15)$: mean age $=66.7+/-5.4 ;$ median $=66 ;$ Male:Female $=12: 3$
- Control group $(n=15)$: mean age $=66.6+/-11.1 ;$ median $=67$; Male:Female $=10: 5$
- Comparison of ages in the study groups: $P=0.98$ (two-tailed t-test, unequal variance)

Table S2. Design of custom PCRArray, the "AAA-chip", with 43 genes of interest and 5 controls

Gene Symbol	Gene ID	RefSeq $_{*}$ Number *	RT 2 Catalog Number	Size of PCR Band (bp)	Reference Position †	Splice Variant Amplicons

GATM	$\underline{2628}$	NM_001482	PPH09960	84	1682	NA
GPR65	$\underline{8477}$	NM-003608	PPH12137	105	578	NA
HSPB2	$\underline{3316}$	NM-001541	PPH01204	109	320	NA
IL10RA	$\underline{3587}$	NM-001558	PPH00591	101	3400	NR026691
ITGA10	$\underline{8515}$	NM_003637	PPH00635	92	3433	NA
ITGA5	$\underline{3678}$	NM-002205	PPH00176	87	2690	NA
LARP6	$\underline{55323}$	NM-197958	PPH19780	117	153	NM018357
LCP2	$\underline{3937}$	NM_005565	PPH01634	154	1664	NA
LDOC1	$\underline{23641}$	NM_012317	PPH09280	83	170	NA
LMOD1	$\underline{25802}$	NM_012134	PPH10165	122	3126	NA
LYZ	$\underline{4069}$	NM-000239	PPH14748	105	295	NA
MARCKS	$\underline{4082}$	NM_002356	PPH05579	158	1457	NA
MFGE8	$\underline{4240}$	NM-005928	PPH07218	88	1217	NM001114614
MX2	$\underline{4600}$	NM-002463	PPH01326	164	2818	NA
NCF4	$\underline{4689}$	NM-000631	PPH14176	174	1312	NM013416
NPTX2	$\underline{4885}$	NM_002523	PPH07197	149	1278	NA
NTRK3	$\underline{4916}$	NM_002530	PPH01551	173	1584	NM001007156,
PDE8B	$\underline{8622}$	NM_003719	PPH10098		92	2432

*The RefSeq Accession number refers to the representative sequence used to design the primers.
${ }^{\dagger}$ The Reference Position is a position within the sequence of the amplicon relative to the start of the relevant RefSeq sequence.
${ }^{\S}$ The primers used for the assay can also generate amplicons from the listed splice variants.
Information was generated from: http://sabiosciences.com/RT2PCR.php. Assays can be purchased from SABioscience-Qiagen. A custom PCRArray was designed with 43 genes of interest selected from our two microarray studies [1], and run on RNA samples isolated from a set of 15 human AAA samples and 15 control abdominal aorta samples (Supplementary material online, Table S1). cDNA synthesis was performed using the RT^{2} first strand kit (SABiosciences-Qiagen, Frederick, MD). Expression of the 43 genes was analyzed in a 96 -well plate using a custom RT^{2} Profiler PCR array (SABiosciences-Qiagen, Frederick, MD). The assays were run according to manufacturer's instructions (SABiosciences-Qiagen, Frederick, MD) in a 7500 Fast Real Time PCR system (Applied Biosystems, Carlsbad, CA). Two housekeeping genes (GAPDH and RPL13A) were measured to standardize the results. After PCR, amplification plots were inspected and baselines and threshold values were set according to the manufacturer's recommendations (SABiosciences-Qiagen, Frederick, MD). The threshold cycle numbers $\left(\mathrm{C}_{\mathrm{T}}\right)$ were computed for each well. For calculating the $\Delta \mathrm{C}_{\mathrm{T}}$ values for each well and processing the results further, the online analysis tool provided by SABiosciences-Qiagen was used. Briefly, the amplification C_{T} values from the housekeeping genes were subtracted from the gene-of-interest C_{T} values for each sample to calculate the $\Delta \mathrm{C}_{\mathrm{T}}$.

Table S3. Primary antibodies used for Western blots and immunohistochemical staining

Gene Symbol	Protein name	Antibody catalog number	Vendor	Species	WB Dilution	IHC Dilution
ACTB	ACTB	A1978	Sigma	Mouse monoclonal	1:1000	
PTPRC	PTPRC	HPA000440	Sigma-Aldrich	Rabbit	1:100	1:50
PTPRC	CD45	MS-355-R7	Thermo	polyclonal Mouse monoclonal	1:200	1:200
CD4	CD4	M7310	Dako	Mouse	1:200	
CD4	CD4	790-4423	Ventana	monoclonal Rabbit monoclonal		as provided by company
GATM	GATM	HPA026077	Sigma-Aldrich	Rabbit polyclonal	1:200	1:115
ITGA5	ITGA5	AB1928	Chemicon	Rabbit polyclonal		1:188
ITGA10*	ITGA10	sc-161740	Santa Cruz	Goat polyclonal	1:200	
$L Y Z{ }^{\dagger}$	LYZ	A0099	DAKO	Rabbit polyclonal		1:401
FOSB	FOSB	sc-48	Santa Cruz	Rabbit polyclonal		1:240
MFGE8*	MFGE8	sc-8029	Santa Cruz	Mouse monoclonal		1:100
BLNK	BLNK	sc-15345	Santa Cruz	Rabbit polyclonal		1:51
DUSP6	MKP-3	sc-28902	Santa Cruz	Rabbit polyclonal		1:80
CXCR4	Fusin	sc-9046	Santa Cruz	Rabbit polyclonal		1:120
PLEK	PLEK	sc-100813	Santa Cruz	Mouse monoclonal		1:50

WB, western blot; IHC, immunohistochemical staining
*Antibody did not perform well and no results are reported here.
${ }^{\dagger}$ For staining with LYZ antibody tissues were pre-treated with proteinase K according to DAKO protocol.

Reference:

1 Lenk GM, Tromp G, Weinsheimer S, Gatalica Z, Berguer R, Kuivaniemi H: Whole genome expression profiling reveals a significant role for immune function in human abdominal aortic aneurysms. BMC Genomics 2007;8:237.

Fig. 1S (on next page). A network of the 38 differentially expressed genes in AAA. The analysis, which was carried out with Ingenuity Pathways Analysis software version 9.0 (IPA, Ingenuity® Systems, Mountain View, CA, www.ingenuity.com), yielded four networks, which were then merged. The differentially expressed genes are highlighted in grey. Molecules are represented as nodes, and the biological relationship between two nodes is represented as a line. All lines are supported by at least one literature citation or from canonical information stored in the Ingenuity Pathways Knowledge Base. Nodes are displayed using various shapes that represent the functional class of the gene product. Lines are displayed with various labels that describe the nature of the relationship between the nodes (e.g., P for phosphorylation, T for transcription).

